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Abstract

In recent years, there has been a growing trend of using data-driven methods in
industrial settings. These kinds of methods often process video images or parts,
therefore the integrity of such images is crucial. Sometimes datasets, e.g.
consisting of images, can be sophisticated for various reasons. It becomes critical
to understand how the manipulation of video and images can impact the
effectiveness of a machine learning method. Our case study aims precisely to
analyze the Linemod dataset, considered the state of the art in 6D pose
estimation context. That dataset presents images accompanied by ArUco
markers; it is evident that such markers will not be available in real-world
contexts. We analyze how the presence of the markers affects the pose estimation
accuracy, and how this bias may be mitigated through data augmentation and
other methods. Our work aims to show how the presence of these markers goes
to modify, in the testing phase, the effectiveness of the deep learning method
used. In particular, we will demonstrate, through the tool of saliency maps, how
the focus of the neural network is captured in part by these ArUco markers.
Finally, a new dataset, obtained by applying geometric tools to Linemod, will be
proposed in order to demonstrate our hypothesis and uncovering the bias. Our
results demonstrate the potential for bias in 6DOF pose estimation networks, and
suggest methods for reducing this bias when training with markers.

Keywords: Digital image; Data manipulation; Linemod; Convolutional Neural
Networks; Deep Learning explainability; 6DoF pose estimation; Saliency maps

1 Introduction
1.1 Domain of interest

Recovering the 6-Degrees-of-Freedom (often referred to as 6D) pose of an object

from a single RGB image is a relevant computer vision problem with several ap-

plications in the domains of industrial automation [1], robotics [2] [3], automotive

[4] [5], augmented reality [6] and several others. Generally speaking, given an RGB

image I ∈ Rw×h×3, a 6D pose estimation algorithm should recover the translation

t = (tx, ty, tz) and rotation R = (rx, ry, rz) vectors that describe the position and

orientation of an object in the camera coordinate system [7]. Recent learning-based

techniques that use Deep Neural Networks (DNNs) have proven to achieve very

high performance scores in the 6D object pose estimation, achieving state-of-the

art results. Convolutional Neural Networks (CNNs) in particular, achieve impres-

sive results in a wide variety of computer vision problems, including 6D pose esti-

mation from RGB input, at the cost of being extremely data driven and requiring
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huge amounts of labeled training examples. In Section 2.1 we present a taxonomy of

the most popular Deep Learning methods for 6D object pose estimation. While for

other computer vision tasks the dataset acquisition and labeling are easy to obtain,

resorting to manual labeling, this is not the case for 6D object pose, since identify-

ing ground truth translations and rotations from real images is not easily feasible

for a human annotator. The research community has resorted to either relying on

large datasets obtained from a photorealistic simulation [8] or to smaller datasets

of real-world images labeled by relying on fiduciary markers [9, 10].

1.2 Annotation induced Bias

We refer the reader to Section 2.1 for an overview of the datasets present in the

literature. We are particularly interested in real-world datasets that rely on markers

to extract the object pose ground truth. We are curious to analyze if the presence

of easily recognizable shapes of markers might bring about a bias in the learning

procedure, resulting in an improved success in the 6D pose estimation.

Commonly used 6D pose estimation methodologies use the Linemod (LM) dataset

[9]. This dataset is labelled by fixing the target objects to a rectangular board

that is surrounded by ArUco markers [11]. The ground truth object pose is then

retrieved by deploying geometric algorithms which use markers to recover first the

board’s pose in camera coordinates, and, successively, the object’s pose in the same

coordinate system. Utilizing simple image processing algorithms and geometry, the

tags are utilized to recover the board’s pose in camera coordinates, and finally the

object pose is then calculated by applying the known fixed offset from the board’s

coordinates system to the object’s origin.

Figure 1 Samples from the Linemod dataset

The markers and the board used to recover the ground truth pose are visible in

the training and evaluation images. Therefore, we would like to research the effect

that the background and markers have on a similar model to the one detailed in

Section 2.3 when predicting the 6D pose from the whole image. Additionally, the

arrangement of the objects on the board could cause the model to learn a shortcut

or induce unintended behavior. As Linemod is a dataset for single-object, only the

pose for the object in the middle of the board is provided for training. We hypothe-

size that some models could leverage the aspect of other visible objects to infer the

6D pose for the target object in an unintended way.

When assessing the efficacy of a proposed method based on Linemod, or similar

datasets, it is important to consider its generalization capabilities. This entails
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evaluating the performance of the method when applied to different scenarios and

practical applications, such as robotic manipulation or object tracking for trajec-

tory planning purposes. Furthermore, factors such as changing backgrounds or the

lack of ArUco markers or other types of markers should also be taken into account.

To this end, the following factors should be taken into account:

• How beneficial is it to have the target object positioned in the center of the

board?

• To what extent is the method affected by a static or semi-static background?

• Does the network utilize 6D pose information from visible markers and the

objects surrounding it?

1.3 Methodology overview

This paper presents a qualitative and quantitative analysis of EfficientPose (EP)

[12], which was chosen as an ideal candidate for attempting to answer the afore-

mentioned questions due to its state-of-the-art performance on Linemod [1] and its

ability to operate on the full image. The purpose of this analysis is to illustrate

a possible process to assess the generalization properties of a model, which is an

essential requirement for any real-world application. In addition, this paper aims to

emphasize the significance of selecting a proper dataset when training new models.

In fact, relying on a dataset which introduces some bias could lead to deceptive

outcomes.

Our work could further be situated within the field of 6D pose explainability, an area

which, to the best of our knowledge, has not been discussed previously. Given the

prevalence of CNNs in computer vision and their tremendous power, it is essential to

use interpretable models which can explain their predictions. This is important for

identifying failure modes, enabling researchers to concentrate on the most promising

directions. Furthermore, to ensure the reliability of CNNs in real-world applications,

it is necessary to set up appropriate confidence and trust.

Paper organization: In Section 2, the state-of-the-art for 6D pose estimation

datasets are described, insights into the 6D pose Deep Learning methods, with a

focus on EfficientPose, are provided. Additionally, the Saliency maps methods for

interpreting the learning process are explained. In Section 3 are described in details

the experiments we have done to demonstrate our hypothesis. In Section 4 numerical

and visual results are discussed, with their limitations and consequences. Finally,

in Section 5 there are conclusive considerations.

2 Related works
2.1 Datasets

2.1.1 Linemod and Linemod-Occluded

Linemod [9] is one of the most common benchmarks in the 6D pose estimation

domains: it consists of real images with 15 classes (or object models), acquired from

different views. A subset of images is provided for each object class, which provides

ground truth 6D pose label only for the target object, which is placed around the

center of a custom-made work plane and surrounded by other cluttering objects

[1]https://paperswithcode.com/sota/6d-pose-estimation-on-linemod
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that cause only mild occlusion. As previously noted, the working plane consists of a

chessboard-like structure delineated by custom-made ArUco markers. The work of

Linemod-Occluded (LM-O) [10] introduces additional ground truth annotations for

all modeled objects in one of the test sets, incorporating various levels of occlusion,

resulting in a more challenging pose estimation task.

(a) T-Less (b) HB (c) HOPE

Figure 2 Samples from various datasets

2.1.2 T-LESS

The T-LESS dataset was presented by [8], and consists of 30 industry-relevant

objects which lack texture or discernible color, as well as 20 RGB-D scenes that

were recorded through three synchronized cameras: the PrimeSense Carmine 1.09,

the Kinect 2 RGB-D cameras, and the Canon RGB camera. The objects featured

in the dataset present some symmetries and mutual similarities, with some being a

combination of multiple objects.

2.1.3 HomebrewedDB

Structurally similar to T-LESS, HomebrewedDB (HB) [13] covers a wider range of

objects and provides more challenging occlusions. It consists of 33 highly accurate

3D models of toys, household objects, and low-textured industrial objects of vary-

ing sizes, along with 13 sequences containing 1340 frames filmed with two RGB-D

sensors. The scenes range from simple (three objects on a plain background) to

complex (highly occluded with eight objects and extensive clutter). Interestingly, a

chessboard-like pattern similar to the one used in Linemod is clearly visible also in

HB.

2.1.4 HOPE

NVIDIA Houseold Objects for Pose Estimation (HOPE) [14] introduced a new

dataset of toy grocery objects. The annotations for this dataset were obtained man-

ually, through the identification of point correspondences between images and 3D

textured object models. During the acquisition phase, ten different environments,

with five object arrangements/camera poses per environment, were used. These 50

different scenes exhibit a wide variety of backgrounds, clutter, poses, and lighting.

To provide additional clutter and partial occlusion, objects are also placed in other

containers, such as bags or boxes. Of significance in the scope of this paper, the

dataset is advantageous as it does not utilize markers or ArUco markers during ac-

quisition. Moreover, the different environments permit to better generalize. In total,
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the dataset contains 50 unique scenes, 238 images and 914 object poses. Once set

the camera and the object position, some light effects are applied, in order to have

more images with little differences in shadows and change colors, thereby resulting

in more static images that did not need to be annotated.

2.2 6-DoF Pose Estimation

Deep-Learning based 6D pose estimation from RGB images can be divided into two

approaches: top-down, which uses a 2D detector to identify 2D targets (either key-

points or bounding boxes) in the image before estimating the pose of each object,

and bottom-up, which estimates the 6D pose of all the objects directly. The first cat-

egory includes the keypoint-based methods which, first, extract 2D keypoints from

the image, either chosen directly from the object’s surface or as 2D projections of

the eight cuboid corners, and then solve a Perspective-n-Point (PnP) problem [15],

[16] to recover the 6D pose. Top-down methods can also include dense methods [17],

that operate by predicting the corresponding 3D model point from each 2D pixel

of the object and then solving the PnP problem from sense 2D-3D correspondences

between points. Bottom-up methods on the other hand in principle could simply

regress the 6D pose directly from the image, however, directly estimating the 3D

rotation is also difficult, since the non-linearity of the rotation space makes CNNs

less generalizable. Recent works [18, 12] extend single-shoot 2D object detectors to

additionally regress translation and rotation vectors for each detected object.

2.2.1 EfficientPose

EfficientPose [12] is an extension of a widely used 2D detector, EfficientDet (ED)

[19], based on the popular convolutional backbone EfficientNet [20]. In a single

shot, the architecture is able to predict the class, the 2D bounding box, rotation,

and translation of one or more objects, given an RGB image as input. In detail,

two analogous to the classification and bounding box regression subnetworks are

added to ED, modeled after the classification and bounding-box regression of the

original model. The rotation subnetwork predicts the rotation vector r ∈ R3, in an

axis-angle representation. Its architecture is similar to the class and bounding box

regression, with the addition of an iterative refinement module. The final rotation is

then the sum r = rinit+∆r where rinit is the initial estimate for the rotation, while

∆r is the iterative refinement module, given as output of separable convolutional

layers, group normalization and activation functions. The translation network on

the other side shares a similar structure. Instead of regressing directly (tx, ty, tz),

the t-architecture predicts separately (cx, cy), which represents the object center in

the image, and tz. After this, tx and ty are obtained from (cx, cy) and fixed camera

parameters, as done in [21].

2.3 Saliency Maps

Interpretable Machine Learning (IML) [23] has experienced rapid growth in the

Machine Learning domain, primarily focusing on elucidating the process behind a

model’s specific prediction. While some models, such as Decision Trees and Rule

Based Classifiers, are inherently interpretable, DNNs cannot be interpreted in the

same manner and are generally considered to be a black-box predictor after train-

ing. Pixel attribution is a family of attribution methods designed to interpret the



Govi et al. Page 6 of 17

(a) Input (b) Backprop (c) Grad-CAM (d) Guided-GC

Figure 3 Output of saliency methods for the class Mastiff. Source [22]

prediction of models that operate on images, with the aim to produce a saliency

map which highlights the importance of individual (or groups of) pixels in the in-

put image for the model’s specific output. One of the simple methods to generate

saliency maps, introduced in [24] is sometimes referred to as Vanilla-Gradient, and

it consists of computing the gradient of the output prediction with respect to the

input image. More formally, given s = Ψ(I), where Ψ(·) denotes the (trained) neu-

ral network, the gradient ∂Ψ
∂I can be easily obtained via standard backpropagation.

Grad-CAM [25] is a more recent method to produce saliency maps: differently from

the vanilla gradient, the gradient of the output ys, that is the class score before the

softmax, is computed with respect to the output feature map Ak of a convolutional

layer (ideally, the last one before the global average pooling of traditional classifi-

cation models). The gradient tensor is then averaged across the spatial dimensions

indexed by i, j to obtain a single vector αs
k ∈ Rc where c denotes the number of

channels:

αs
k =

1

Z

∑
i

∑
j

∂ys
∂Ak

ij

(1)

Finally, the saliency maps are obtained by weighting each channel of the feature

map Ak with the corresponding value of αk:

LGC = ReLU

(∑
k

akA
k

)
(2)

We refer the interested reader to the exceptional work of [23] for a deeper under-

standing of the discussed methods and several others, which falls beyond the scope

of this work. In Section 3.2 we will discuss our generalization of Grad-CAM for the

regression problem of our interest.

3 Methodology
The aim of this research is to explore the potential for bias to be introduced into the

model due to the presence of visible artifacts, particularly markers employed in the

data collection process. We will focus our experimentation on the Linemod dataset,

a well-known non-synthetic dataset, and the EfficientPose model, which is currently

the most effective fully-convolutional network for Linemod. We propose a mixed
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evaluation of qualitative observations, utilizing the attribution methods discussed

in Section 2.3, and quantitative experimentation, involving the evaluation of results

obtained from modified versions of the Linemod dataset, to assess the validity of

our hypothesis.

The proposed methodology, can be briefly summarized as follows:

• We propose to pre-process Linemod by deliberately masking the visible mark-

ers and use the new version of the dataset for the training of EfficientPose. The

6D pose estimation task is then compared between the late and the original

training of EP.

• We also introduce a generalization of pixel attribution methods for a regres-

sion problem, and show that the saliency maps produced with the extended

version of Grad-CAM support our hypothesis that the model’s predictions are

contingent upon the presence of fiduciary markers on Linemod.

In the remainder of this section we detail the building blocks of the proposed

methodology, then in Section 4 the conducted analysis is proposed and discussed in

detail.

3.1 Dataset Masking strategy

For our analysis, two datasets have been used. One is the original Linemod dataset.

The other is a modified Linemod Dataset, where ArUco markers are covered with

black squares. The process of deleting ArUco markers is based on geometrical tools

and on the objects’ ground truth. Considering the 3D origin point [0, 0, 0] as the

Figure 4 Three steps of our geometric procedure in order to remove ArUco markers.

object’s pivot, when no translation and rotation are applied, the positions of the

black square’s four corners can be identified. The four corners correspond to the

upper-left, upper-right, lower-left and lower-right corners of the ArUco chessboard.

Each corner is represented by a 3D point defined as [±δx,±δy,±δz], where δx, δy, δz

are the axis offsets between the corners and the origin. Corners are identified only

once for each object. Then, for each object image, the corresponding rotation and

translation are applied to accurately project the black square at its correct image

position (see Figure 4). AF-LM Dataset has been done in order to show and discuss

how they influence final results.

In addition, ArUco masks were used also for computing a density map, able to

highlight their presence. The images in Figure 5 indicate for each object which

areas are ArUco markers concentrations. It is evident that these markers are not

equally distributed, instead they focus on the same areas.
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Figure 5 Density maps based on masks. From left to right: object 1, object 5, object 11.

3.2 Saliency maps

For the qualitative analysis, inspired by the domain of interpretable AI, we sought

to interpret and extract information about how the network learns. This is a funda-

mental phase in order to assess the capabilities of 6D methods in other real-world

scenarios, since metrics are limited in providing insight into a network’s compre-

hension.

Saliency methods are mainly developed for multi-class classification problems [26],

and are thus sometimes referred to as Class Activation Maps (CAM) methods. At

inference time, classification models output a probability score for each possible

class, and the highest scoring class is selected as the predicted one. However, in

this study, we focus on a regression problem: this is pertinent as the gradient-based

methods that we plan to use, Vanilla Saliency [24] and Grad-CAM [25], suppress

the negative part of the gradient since it corresponds to a decrease in the score for

the class of interest. In a scenario similar to ours (i.e, regression of rotation values in

[−π, π]) we are clearly interested only in the magnitude of the gradient. Hereafter,

we formalize the exact formulation of the saliency methods used in our work.

Vanilla Saliency It is straightforward to adapt the vanilla saliency for the regres-

sion. The Rotation head of EfficientPose outputs a tensor R ∈ RN×3 of N candi-

date regressions. In a single-object scenario, as in our case, the rotation vector r

for the target object is recovered as the one with the highest confidence. An iden-

tical approach can be adopted also for the translation regression. The gradient of r

computed with respect to the input image I is a tensor with the same shape as the

input image, which is reduced to a single channel by averaging. Unlike the original

formulation, we retain both the negative and positive values of the gradient for

the reasons mentioned above. For visualization, the saliency map (single-channel)

is normalized to the interval [0, 255] using min-max.

Grad-CAM Adapting Grad-CAM to our problem is far more challenging. The

original formulation operates on the feature map produced by the last convolutional

layer of a classification model; however, the structure of the regression head of

EP (simplified in Figure 6) makes it difficult to choose the correct feature map.

Therefore, we opted to use a feature map obtained as the combination of the three

convolutional layers that precede the output of the initial prediction rinit, as the

refinement module is used to predict small additive offsets to the initial prediction,

which may be Identity mappings if the initial prediction does not require refinement.
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C1 C3 C3… …… IR Itera�ve 
Refinement

Figure 6 Rotation subnetwork for EfficientPose. The Translation subnetworks share an identical
structure.

Let F1, F2 and F3 ∈ RW×H×C , with W,H,C ∈ N be the three intermediate

feature maps, we construct an aggregated featuremap Ft ∈ RW×H×3C = {F1 ⊕
F2 ⊕ F3} where ⊕ denotes the concatenation on the channel axis. Equation (1) is

adapted by replacing Ak with Ft and replacing the average pooling with L2 norm,

in order to avoid opposing gradient values to elide each other in the sum. The new

formulation for the pooled gradient becomes:

αt =

√√√√√ W∑
i=1

H∑
j=1

(
∂r

∂F ij
t

)2

∈ R3C

The computation of the saliency maps is obtained by weighting each channel of Ft
with the corresponding value of αk and accumulating over the channel axis to obtain

a single matrix. Differently from eq. (2) the ReLU is removed and the absolute value

of the weighed feature map is instead taken:

LGC =

3C∑
t=1

|atFt|

The produced saliency map is normalized and interpolated to the input image shape

for visualization. The formulation, derived from simple but solid mathematical ob-

servations, results in an ideal generalization of Grad-CAM to our case.

3.3 Evaluated Task metrics

The metrics that we used to test the networks are two:

• ADD: the average distance computes the mean distance between each point

of the 3D model obtained by the pose matrices P̂ = [Rest, test; 0, 1] and

P = [Rgt, tgt; 0, 1]

Given the model M, the estimated pose P̂ and the ground truth P

eADD = avgx∈M‖P̂x−Px‖

• ADD-S: the average closest point distance computes the mean distance be-

tween each point of the 3D estimated model and its closest neighbor on the

ground truth model:

eADD−S = avgx1∈M min
x2∈M

‖P̂x1 −Px2‖
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It is preferred if the model M has indistinguishable views.

• Criterion of Correctness The estimated pose is considered correct if e <

θAD = kmd where km constant generally equal to 0.1, d = object diameter

3.4 Proposed Evaluations

For our experimental analysis we focus on the Rotation subtask of EP, since the

translation regression is based on an identical structure, as introduced in sec-

tion 2.2.1, the same principles are agnostic to the regression subtask. We compare

the results, both qualitatively and quantitatively, obtained by two architecturally

identical instances of EP: the original model trained on the official Linemod dataset

and an alternative version trained on the ArUco-Free dataset introduced in Sec-

tion 3.1. Since we focus on single-class EP, the evaluation procedure is performed

independently for three distinct representative object classes from Linemod.

To summarize, a total of 6 distinct versions of EP are trained: we pick the standard

version of EP (φ = 0) and train on subsets of objects 1 (Ape), 5 (Can) and 11 (Glue)

of both original (LM) and Aruco-Free Linemod (AF-LM) datasets. For each trained

model, we compute 6D-pose metrics (section 3.3) and saliency maps (section 3.2)

on both the validation subsets of LM and AF-LM for the corresponding object. In

the following section we provide the complete analysis of the proposed study.

4 Results and Discussion
4.1 Quantitative analysis

We considered three objects: one with symmetric views (object 11, glue) and the

other two asymmetric (object 1, ape and object 5, can). Considering ADD(-S) as a

metric, the following rule is used:

ADD(−S) =

ADD − S, if obj sym

ADD, if obj asym

4.1.1 Object 1: the ape

Table 1 shows how EfficientPose performs on the two different datasets. We can

observe that in both training (with and without ArUco markers) the network learns

from the background. In fact, if the test dataset is different from the train one, the

pose estimation accuracy collapses. Figure 7 compares estimated (blue) with ground

truth (green) bounding boxes, with weights learned on the Original LM Dataset.

When ArUco-Free Dataset is used as test, in some cases the rotation is wrong,

in others the object is not even detected. Probably, when the ArUco markers are

covered, the network still learns from the black square around the object. Object 1

achieves the worst performances on both datasets.

4.1.2 Object 5: the can

For object 5, the can, we used trained EfficientPose weights with φ = 0 on the

Original LM Dataset and on the ArUco-Free Dataset. The object is not symmetric,

therefore ADD is used. For this object, we noticed that the results are similar to the

ones of object 1, and confirm our thesis of background-induced bias. However, in

this case, EfficientPose with our ArUco-Free Dataset performs better in both cases

(Original LM and AF-LM datasets), as shown in Table 2.
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Figure 7 These images are used during the test phase on object 1 with weights downloaded from
the available Efficient Pose training (φ = 0). The green box represents the ground truth pose,
while the blue one represents the estimated pose. On the first and third rows there are test images
from the original Linemod dataset, while on the second and fourth rows there are the
correspondent images from ArUco-Free dataset. We observed that the boxes are all wrong and, in
some cases, the network doesn’t even detect the object.

4.1.3 Object 11: the glue

The third object we chose for our study is a symmetric object, for this reason, we

show ADD-S results in Table 3. They are higher since ADD-S has more relaxed

constraints than ADD (as can be deduced by the definition). In this case, while

performances on the same dataset of the training are almost perfect, with an accu-

racy of 100%, the training without ArUco performs better than the other with the

opposite dataset. Therefore, the average accuracy is better. From these metrics it

is evident that the network learns from the background. However, accuracies don’t

give us information about which background areas are more relevant than others.

To explain better these results, we used saliency maps in the next section.

4.2 Qualitative analysis

Figure 8 shows Vanilla Saliency maps. They are computed with respect to two

Original LM images. The weights are given by EfficientPose code for object 1,

with φ = 0. The map represents the gradient magnitude for each pixel. Since EP

has a first common feature extraction phase and, then, is divided into different

subnetworks with their own output (classification, bounding boxes, rotation, and
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Test

Original LM training
Original LM

0.8771
AF-LM

0.0162
0.4467

AF-LM training
AF-LM

0.8848
Original LM

0.0
0.4424

Table 1 This is object 1. ADD is computed on the two datasets with the two types of weights
available (trained with φ = 0 ). Then, in the right column, for each training, the two test results’
averages are computed, in order to observe which experiment performs better both on the test images
of the same image type seen during training, and on the test images of the type never seen.

Test

Original LM training
Original LM

0.9852
AF-LM

0.0315
0.5083

AF-LM training
AF-LM

0.9921
Original LM

0.1673
0.5797

Table 2 This is object 5. ADD is computed on the two datasets with the two types of weights
available(trained with φ = 0 ). Then, in the right column, for each training, the averages of the two
test results are computed, in order to observe which experiment performs better both on the test
images of the same type of the images seen during training, and on the test images of the type never
seen.

translation), two saliencies for each image have been compared. The ’rotation’ im-

age represents vanilla saliency map based on the rotation subnetwork, while the

’classification’ image comes from the classification subnetwork. The differences for

object 1 in this image are significant. In fact, while the saliency for classification

is grouped into the principal object, the ape, instead the rotation saliency is more

scattered and goes also on the marker chessboard. It probably means what we

expected: that, for the position output, a bias is induced by background, which

plays a fundamental role. In order to improve our study with a more sophisticated

and explainable saliency method, we also computed saliency maps with GradCAM

method. Moreover, sometimes Vanilla Saliency could have a saturation problem, as

shown by [25] and [23].

In Figure 9, we can observe different results for the three objects. The weights

are learned on the Original LM, while the tests are computed on both datasets.

For example, for object 1 (on the left), pixels with higher saliency values are, on

the Original LM (top), distributed on the object and the markers, whereas on the

AF-LM, they do not put focus on markers, in fact they are covered. It means

that, when ArUco values collapse to zero, they are not anymore interesting for the

rotation estimation.

For object 5, in the center, the focus is on a large area which includes also the can.

Therefore, the network uses not only the principal object, but also the background

one, to estimate the final pose. This is possible since background objects do not

change their position with respect to the can.

Similar to the ape behavior, for object 11’s pose estimation EP focuses on marker

chessboard, not even observing the principal object. When markers are zeroed,

saliency is distributed in not well-defined areas. These images prove the fact that

there is a background-bias during EfficientPose training with ArUco markers.

Figure 10 represents saliency maps obtained from our weigths, learned on the AF-

LM. These results are quite different from the previous ones.

For object 1 the saliency is not on the markers, however, the network doesn’t focus

on the ape, looking for information in other background objects. Saliency does not

change a lot: it means that markers are not the central keypoints for pose estimation.
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Test

Original LM training
Original LM

1.0000
AF-LM

0.3031
0.6516

AF-LM training
AF-LM

1.0000
Original LM

0.4083
0.7042

Table 3 This is object 11. ADD-S is computed on the two datasets with the two types of weights
available (trained with φ = 0 ). Then, in the right column, for each training, the two test results’
averages are computed, in order to observe which experiment performs better both on the test images
of the same image type seen during training, and on the test images of the type never seen.

Figure 8 Vanilla Saliency applied on two images of the Original LineMod dataset. Weights are
trained on the same dataset. The gradient is computed given two different outputs: in the second
image it is based on the regressor, in the third image it is based on the classificator.

Nevertheless, the network on the Original LM dataset has the worst performance

accuracy.

Also, in object 5 (in the center) images saliency maps seem to remain the same for

both tests.

An interesting phenomenon happens with object 11 (on the right). The most plausi-

ble interpretation is that weights on the ArUco-Free dataset predict the pose based

on the square edges. When these edges are not so strongly highlighted due to the

presence of ArUco markers, the prediction is wrong. For this reason, we think that

covering the ArUco markers is useful for uncovering the bias, but it’s not enough

for obtaining a more generalized dataset.

An interesting result emerges from the saliency maps calculated for the model

trained on the Original LM dataset. For the original Linemod images, the saliency

maps focus on both the ArUco markers and the area close to the target object,

as described above and depicted in Figure 9 (top). In contrast, for the ArUco-Free

Linemod images, the saliency maps are sometimes zeroed out. This observation can

be explained by the fact that, for ArUco-Free Linemod images, some pixels were

zeroed for each RGB channel. The zeroing of these pixels, which refer to the ArUco

markers considered essential for the EP model, causes the gradients to be zeroed

as well. It is as if these null values made that part of the hyperplane on which the

gradients were calculated constant.

Indeed, the gradient is zero for any constant value, as well as for a minimum or

maximum point. Furthermore, for these specific images, we verified that the last

activations before the last convolutional layer used for the Grad-CAM calculation

were not null.

4.3 Consequences

Finally, this paper aims to give some advices for avoiding background-induced bias

in 6D object pose estimation. Foremost, networks are preferable which first detect

the object, and then predict the pose of the cropped image. Secondly, the dataset



Govi et al. Page 14 of 17

Figure 9 On the top: saliency maps with weights provided by EfficientPose on the original
Linemod Dataset. On the bottom: saliency maps with the same weights, applied to our
ArUco-Free Linemod dataset. From left to right: object 1, object 5, object 11.

Figure 10 On the bottom: saliency maps with weights learned on the ArUco-Free Linemod
Dataset, applied to the Original LM dataset. On the top: saliency maps with the same weights,
applied to our ArUco-Free Linemod dataset. From left to right: object 1, object 5, object 11.

choice is also fundamental. To avoid biasing the learning method, it is important to

change the background from training frames. In particular, different lights, views

and background objects are helpful to overcome this issue. For example, HOPE [14],

as written in section 2.1, presents images in different scenarios, changing also the

lights. In addition, we propose to change the markers to avoid repetitive appearances

across consecutive frames.

4.4 Future Purposes

This paper is limited to one dataset and focuses on EfficientPose, but our future

purposes include working on different existing 6D methods, in order to compare

networks not only for their final ADD(-S) metric, but also for their generalization

skills and their applicability. Moreover, we plan to release the ArUco-Free Dataset,

such that everyone could use it and measure generalization skills of their own model.

5 Conclusions
We analyzed the effect of the presence of ArUco markers in the dataset regarding the

learning procedure. In particular we found that they induce bias in the performance

of the methodology. We assessed the generalization capabilities of one of the state-

of-the-art 6D pose estimation networks, with respect to the two different datasets:

with and without ArUco markers. The outcome was that the model trained on the

dataset without markers achieves better results. However, we substituted ArUco

markers with a black zone, and the black squares instead of markers are not enough

to generalize. To achieve a better generalization, the dataset should be augmented,

with different lighting conditions, different views and more varied backgrounds.

Our ArUco-Free LineMod dataset could be useful to prove more generalization

capabilities of any newly proposed method. In addition, the object’s position, always
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in the center of the board is not beneficial from the generalization point of view,

and it’s preferable to crop the object once it’s been detected.

Furthermore, the saliency analysis showed that the network definitely utilizes 6D

pose information from visible markers and background objects.

This paper is the starting point to investigate the potential presence of bias in

DNNs trained for 6D pose estimation, and to propose new methods to solve this

problem.
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