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Abstract

Deep Learning has been successfully applied in order to
solve many tasks. The one we would like to work on is about
DeepFake images.
DeepFake algorithms can generate fake images and videos
that humans cannot distinguish from authentic ones. This
is a powerful tool, but it might lead to dangerous conse-
quences if used with bad intentions. The proposal of tech-
nologies that can automatically detect and assess the in-
tegrity of digital visual media is therefore indispensable [8].
This report illustrates the development of a project aimed at
the detection of deepfake images. Our code is available at
https://github.com/tobiapoppi/CVCS project DeepFake

1. Introduction
Recently the world is witnessing a significant increase

in multimedia content generation due to the availability of
economical digital smart devices like cellphones, laptops,
tablets and digital cameras. At the same time, the tremen-
dous advancement in artificial intelligence allows anyone to
easily manipulate multimedia content and spread disinfor-
mation online. In fact, sophisticated algorithms are avail-
able to everyone. Disinformation has potentially tremen-
dous consequences, according to [6], such as election ma-
nipulation, creation of warmongering situations, defaming
any person. For these reasons, deepfake detection has to be
considered as an important and actual problem.
In particular, this report aims to detect images manipu-
lated by several methods, such as FaceSwap, Deepfakes,
Face2Face and NeutralTextures.

Figure 1. Examples of FaceSwapp from Deepfake Challenge
Dataset and FF++ Dataset.

Focusing on FaceSwap images, they consists in the re-
alistic combination of two images, the source and another

candidate one. Recently, realistic results are being provided
by some DL-based approaches, which have become popular
for synthetic media creation. For these reasons, fake detec-
tion will play a fundamental role in the future.
The main contributions of our work are the following:

• Introducing a new dataset, as a combination of already
existent two;

• Introducing a new pipeline for a given image to be de-
tected;

• Providing two different variations of Xception archi-
tecture, a powerful Convolutional Neural Network
(CNN), created for image classification.

Our pipeline is based on the following points:

1. Choose an image to check;

2. Apply the image retrieval algorithm in order to find
if there are some similar, fake or real, images in the
search pool(Section 4);

3. Crop the face of each subject in the image with Effi-
cientDet Head Detector (Section 3)

4. Apply to them the trained DeepFake classifier in order
to find which are the real one (Section 5).

Our pipeline could be the starting point for the imple-
mentation of a bigger project, able to find on the web similar
images and identify the manipulated against the real ones.

2. Dataset
In our project pipeline we used 5 datasets, of which 3

were already used in literature, and 2 new datasets created
by us from those.

• Deepfake Challenge dataset. [2] This dataset was
made available by the Image Processing Lab of the
University of Catania, in order to promote a challenge.
The dataset contains 15000 close-up images of faces,
of which 10000 real and 5000 fake, so it’s unbalanced.
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Fake images have been generated by 5 different algo-
rithms: AttGAN [17], GDWCT [14], StarGAN [15],
STYLEGAN [12] and STYLEGAN2 [13].

• FaceForensics++ dataset. [9] This is a famous dataset
for DeepFake detection. It consists of 1000 origi-
nal video sequences that have been manipulated with
four automated face manipulation methods: Deep-
fakes, Face2Face, FaceSwap and NeutralTextures.

• HollywoodHeads dataset. [10] This dataset con-
tains 369846 human heads annotated in 224740 video
frames from 21 Hollywood movies 2. We used this
dataset in order to achive the head detection task. This
dataset utilizes the Pascal VOC format.

• CVCS DFD (our dataset). This is the first dataset we
created by combining the Deepfake challenge dataset
and frames extracted from FF++ video sequences.

It has been automatically created with our python
script which performs two operations: it first extracts
frames by the FF++’s sequences, then it puts to-
gether all the images contained in the individual Deep-
fake Challenge dataset and all the frames extracted
by FF++, in order to obtain a unique bigger dataset,
which better generalizes the problem.

Then all the images are shuffled and split in three dif-
ferent folders: train, validation and test. The ratio of
each split w.r.t the whole set can be chosen by the user.

• CVCS Cropped DFD (our dataset). This is an al-
ternative version of CVCS DFD dataset, in which all
the images are cropped in order to give to the classifier
only faces, without body and background. It is a copy
of the CVCS DFD dataset but all the images represents
close-up heads. If an image does not contain a head,
it’s not included in CVCS Cropped DFD.

To generate cropped images we used a custom-trained
EfficientDet model to make inference on ”CVCS
DFD” dataset. This will be explained in details in sec-
tion 3.1.

Figure 2. Two example images of HollywoodHeads dataset.

2.1. Annotations

Furthermore, we provided annotations. In the two origi-
nal datasets the only way you can trace labels is by checking
which folder they come from.

We will use our dataset to train some deep and non-deep
models, so we need explicit annotations. We provided two
different kind of annotations, because they are both useful
on different algorithms used.

• Yolo-like annotation type: the dataset contains for
each image a txt file named the same. That file con-
tains 0 if the image is real and 1 if the image is fake.

• Data-list annotation type: outside from train, vali-
dation and test folders, there are three txt files which
contain, for each line, the path to an image of the split
the file refers to, and the label (0 if the image is real
and 1 if the image is fake).

3. Head Detection
The CVCS DFD contains mixed images from Deepfake

Challenge dataset and FF++ dataset. This means that a lot
of images represent a scene with the full body person.

Given that our Deepfake Detector works on face details,
it needs to receive in input images that represent just the
head of the subject. For this reason we tackled the problem
of head detection.

In computer vision the problem of face detection is so
well known and there are already a lot of techniques that
can reach good results. Anyway we considered important
calling this task with the name of head detection. For our
deepfake detector it is really important to see the whole the
head of the person. There are some deepfake examples in
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which hair are essential in order to detect wheter the image
is fake or not.

For this reasons, using a simple method as dlib wouldn’t
be proper, because the result would be the detection of just
a part of the face, moreover it wouldn’t be so precise in
finding really the right bounding box of the head. Thus, we
decided to train an EfficientDet model.

3.1. EfficientDet

EfficientDet [7] is a state-of-the-art object detection ar-
chitecture which gives top priority to efficiency and scala-
bility.

The architecture propose the BiFPN module (weighted
bi-directional feature pyramid network), which allows easy
and fast multiscale feature fusion.

We trained EfficientDet on the HollywoodHeads dataset,
which utilizes PascalVOC format. We didn’t appply any
architectural change to the network. The only change we
made was in the dataset generator, due to dataset compati-
bility purpose.

3.2. Training

We approached the network training process by dividing
it into first training phase and fine-tuning phase.

• In the first training phase, we started with a snapshot
of Imagenet pre-trained weights, freezing the back-
bone parameters. We chose ϕ = 0 as the scale hy-
perparameter, which corresponds to the simplest and
lightest version of the network, and a batch size of 32
with 1000 iterations. This training elapsed 50 epoches.

• In the fine-tuning phase we started the training using
the model parameters of the last epoch of first training.
Batch size is reduced to 4 and iterations are increased
up to 10000, and this will result on the one hand in
increased learning details, on the other hand in a more
noisy learning.

In this particular case the network doesn’t freeze the
backbone, but it freezes the batch normalization lay-
ers, which is a best-practice in a network fine-tuning,
especially if it’s done on examples different from the
first training. Keeping the batch-norm parameters of
the first training, which uses an higher batch size, helps
the model to better generalize. The training lasted 50
epochs.

After both phases, we selected the best weights of the
fine-tuning based on the training-validation loss tradeoff
graph.

3.3. Results

After the first training phase we obtained a mAP value of
0.85, and with the fine-tuning we got a mAP value of 0.88.

Figure 3. Two examples of head detection on CVCS DFD dataset.

4. Image Retrieval
Given a set of images and a query image, the purpose of

this phase is to find the images most similar to the query.
This tool could be useful in our pipeline in finding some
similar images modified in different ways.

4.1. Methods

The usual pipeline for this task consists of:

• Feature extraction method

• Distance/similarity computation between the query
and all other images

• Sorting of closest images

Image features are local, meaningful, detectable part of
the image. Two different methods are tried for the feature
extraction, only one of them uses weights learned from a
CNN.

The first is Harris Detection algorithm [3], able to detect
edges of an image. We chose it because edges are important
features of an image. However, as we will see, they are
not enough. As pre-processing, each image is resized to
299×299 and then converted to its grayscale version. Then
the feature extraction is applied.

The second method utilizes pretrained weights from
resnet [4]. It is a Convolution Neural Network made for im-
age classification problems. In details, the forward phase of
the resnet network, pre-trained on imagenet, is computed,
with the exception of the final layer, which would predict
the class.

For this work Resnet16 is chosen, therefore the feature
extraction output is a 512 × 1 array. Since resnet requires
a 244 × 244 image size, also in this case a pre-processing
phase is necessary. In addition to resize, pixel values are
normalized with specific mean and standard deviation val-
ues.

For similarity/distance computation, both cosine similar-
ity and euclidean distance are chosen.
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Representing (x1, x2) as scalar product and xi as feature
vector, cosine similarity is:

CosSim(x1, x2) =
(x1, x2)

∥x1∥∥x2∥

and Euclidean Distance is :

EucDist(x1, x2) =

n∑
j=0

(x1j − x2j)
2

In the first case the highest value means that the image is the
closest to the query. The Euclidean distance works in the
opposite way. Finally, the possible combinations of meth-
ods are four.

4.2. Results

A qualitative analysis, figure 4, is done on this task.
Observing images, the combinations Harris detection -
cosine similarity and Resnet16 - cosine similarity appear
to perform better. For each method there are 5 common
images and 5 different: this means that the most similar
images are the same for each pipeline, nevertheless each
case extracts different features.

5. Deepfake Detection
5.1. Methods

The methods proposed in this report should be divided
in two categories:

• non-deep category

• different types of Convolutional Neural Networks
based on the same architecture, called Xception

5.2. Non-Deep Detectors

The first non-deep methods are inspired by [16], which
follows the standard detection pipeline and apply, first, a
feature extraction algorithm and, second, a binary classi-
fier. Despite the choice of [16], SURF, we decided to use
the Scale-Invariant Features Transform ([5]) as feature ex-
tractor. More in details, SIFT is a keypoints localizer and
descriptor. The first phase is based on keypoints’ localiza-
tion through the Difference of Gaussians method: different
Gaussian filters are applied at different scales and then the
subtraction results between them are saved. Final outputs
should be approximations of Laplacian of Gaussian Convo-
lutions.

Consequently, local maxima and minima are chosen
comparing them to their 8 neighbours. In addition, not all
local maxima and minima are saved, but they are chosen by
a selection algorithm.

Figure 4. These are two examples of 10 most similar images to
the query image, retrieved by the four different feature-similarity
combinations.

In the second descriptive phase, keypoints are described
by the gradient directions histogram.

Each image was then represented as a matrix in which
each row is a keypoint and each column is a feature of
it (nsamples × 256 - dimensional array). On the obtained
SIFT features, we adopt a bag of word (BoW) model to
represent the image in a more compact and effective man-
ner. First, the keypoints are quantized into visual words to
form a codebook (codebook generation part). This phase is
done by a k-means clustering with Nclusters = 256. Each
visual word is then represented by the centroid of its clus-
ter. The second phase, BoW feature construction, finds the
occurrences in an image of each specific visual word in the
codebook and represent them in a histogram. Each image
is represented by a histogram which counts how many de-
scriptors belong to each visual word,

BoW = [n1, ..., nC ],

ni is the count for cluster ci. The procedure after SIFT is
described in the image 5.
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Figure 5. Bag of Word model after feature extraction.

Consequently, a Support Vector Machine Algorithm and
a Random Forest Ensamble method were trained. They are
machine learning, non-deep, methods. They receive, as in-
put, the BoW histogram. Results were better than random-
ness, but not good: for the first the accuracy on the test
results 0.6756, while the second obtained 0.6753. Before
testing them, both classifier were optimized, respectively,
on box constraint regularization parameter and on the num-
ber of classifiers, figure 6.

Figure 6. On the left SVM regularization parameter C is optimized
on the validation set. On this case, SVM seams to prefer little
values of C. Also different kernel function were tried and the best,
used in this case, was the gaussian kernel function. On the right
the number of classifier for Random Forest method are optimized:
after 500 the classifier does not improve its result, therefore 500
is the best combination of high accuracy and low computational
cost.

5.3. Deep Detectors

In deep learning architectures feature extraction and
classification are done during the same process. In this
case, we decided to choose Convolutional Neural Network
to work on image classification. The network from which
we started is called Xception [1].

Xception is a CNN which gave a new interpretation to In-
ception modules implemented by GoogLeNet in 2014 [11].
François Chollet invented the depthwise separable convolu-
tion, which is the main module used in Xception.

If we consider a simplified Inception module 7 that only
uses a fixed size convolution and does not include average

pooling, we could then replace all the parallel 1×1 convolu-
tions with a single one but larger in terms of filters number
8. His output channels will be split in a number of sets equal
to the number of parallel convolutions of the module.

Figure 7.

This kind of operation is called grouped convolution.
Xception implements an extreme version of grouped convo-
lution, defining the grouping parameter equal to the number
of input channels of the convolution. Thus, it is pretty rea-
sonable to call this version of grouped convolution with the
name of depthwise convolution.

Figure 8. An equivalent reformulation of the simplified Inception
module.

We proceed by outlining the three architecture variants
we propose in this project.

Xception Architecture This is the original Xception ar-
chitecture, taken from [1] and represented in Figure 9.

MidwayXception Architecture In this version of Xcep-
tion we made some architectural changes. In first place we
replaced the depthwise separable convolution module with
a new one, which finds place in the midway between Xcep-
tion depthwise separable module and Inception simplified
module.
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In [1], they make the following hypothesis: that the map-
ping of cross-channels correlations and spatial correlations
in the feature maps of CNNs can be enterely decoupled. Our
MidwayXception module uses as the grouping parameter
half the number of input channels and as a result the new
network has more parameters, and we lose the decoupling
hypothesis.

That hypothesis can be interpreted as a too strong as-
sumption. Furthermore, in [1] the author asserts that there
is no reason to believe that depthwise separable convolu-
tions are optimal, and he suggest those lines as a good fu-
ture direction. For these reasons we decided to implement
MidwayXception.

A second architectural change is the 1 × 1 parallel con-
volution added to the Middle flow 9 instead of adding the
identity function.

LightXception Architecture It is our lighter version of
Xception original architecture. Four of the eight blocks
of the Middle flow have been removed. You can see these
blocks in the original architecture represented in figure 9.

5.4. Results

N Crop Net Opt LR BS Ep.
1 No Xcept Adam 0.001 16 20
2 Y MidXcept Adam 0.001 16 20
3 No MidXcept Adam 0.001 16 20
4 Y MidXcept Moment 0.001 16 20
5 Y MidXcept Moment 0.01 16 20
6 Y LightXcept Adam 0.001 16 20
7 Y Xcept Adam 0.001 8 25
8 Y Xcept Adam 0.001 16 25
9 No Xcept Adam 0.001 16 15

Table 1. Architectures details. Opt is the optimizer type, which can
be Adam or SGD Momentum. The Loss function, for all training,
is the Weighted Cross-Entropy. Some trainings are done on the
Cropped CVCS-DFD dataset, some others on the same data with-
out the head detection. The Learning Rate is not fixed, as in the
original Xception is an adaptive lr. Dropout is equal to 0.5.

N ACCv ACCt Prec0 Prec1 Rec0 Rec1
1 0.85 0.85 0.82 0.87 0.72 0.92
2 0.76 0.843 0.77 0.87 0.73 0.89
3 0.835 0.897 0.96 0.87 0.70 0.98
4 0.755 0.824 0.73 0.86 0.72 0.87
5 0.764 0.776 0.62 0.89 0.82 0.75
6 0.803 0.849 0.74 0.91 0.82 0.86
7 0.763 0.778 0.89 0.696 0.60 0.93
8 0.867 0.867 0.79 0.91 0.82 0.89
9 0.893 0.896 0.97 0.88 0.71 0.99

Table 2. Final results: best accuracy on the validation set, accuracy
on the test, Precision on the test for class 0 and 1, Recall on the
test for class 0 and 1.

Results are resumed in table 1 and 2.

The best optimizer seams to be Adam, with learning rate
equal to 0.001. In details, the learning rate is not fixed: it
is adaptive, with a decay of 0.05 each 5 epochs. Unfortu-
nately, we had not enough computational power for trying
higher-dimensional batch-size. On the contrary of our ex-
pectations, architecture 3 with non-cropped data seams to
be the best for accuracy on test. However, this is unexplain-
able, in fact the classification should be easier for detected
images. At the same time, we noticed that in architecture
3 the recall for class 0 is the lowest, and the difference be-
tween recall 0 and precision 0 is the highest. This means
that probably the network classify lot of images as 0, even
if our training was balanced. For this reason we decided
to consider, as best result, the 8-th architecture, with pre-
cropped data. Our suppositions are confirmed by the final
phase on our faces.

From figure 10, we observed that the architecture learns
rapidly and, then, the high number of epochs does not help
improving the final accuracy. Therefore, we tried on the
test both parameters of the 8-th and 24-th epochs: the re-
sults were respectively of 0.8800 and 0.8668. Therefore,
one future purpose should be the addition of an early stop-
ping method. Moreover, the results on the 8-th epoch seems
to be more balanced for classes: the precision on class 0 is
0.8428, while on class 1 is 0.8980, the recall on class 0 is
0.7811, while on class 1 is 0.9297.

Figure 10. From these images, representing the accuracy and loss
function values on the validation, is evident that improving the
number of epochs does not achieve better results.
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Figure 9. Original Xception Architecture details from the paper.

6. Final application: our faces
Finally, we decided to try out our pipeline on our faces.

First, images fake and real are acquired. The modification is
done on the website https://icons8.it/swapper, which works
with AI algorithms. Here are the results:

1. Image Retrieval best result;

2. Head Detection and Classification;
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7. Future purposes
Xception is a powerful but complex architecture. Since

we had limited time and computational resources, we
only proposed 2 variation of Xception, but other possible
changes could be applied to further improve final result.
For example, a combination of our LighterXception and
MidwayInception could be implemented. In addition, the
hyperparameters should be optimized for our customized
architectures, especially for the optimizer and learning rate
choices, which play a fundamental role on the final results.

8. Conclusions
In general, deepfake detection will be more challeng-

ing in the future, due to the fact that deepfake generation
makes deepfake more realistic and easier to make. More-
over, deepfake has been a significant threat to national se-
curity, democracy, society, and our privacy, which calls for
deepfake detection methods to combat potential threats. For
these reasons we deeply believe that research must continue
on this way.
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