
Università degli Studi di Modena e Reggio Emilia

Dipartimento di Ingegneria “Enzo Ferrari”

Corso di LaureaMagistrale in Ingegneria Informatica

Towards Trustworthy AI: LLM Aligning for
Offensive Content Removal

Candidato:

Tobia Poppi

Relatori:

Prof. Rita Cucchiara,

Dott. Lorenzo Baraldi

Correlatori:

Samuele Poppi,

Dott. Marcella Cornia

Anno Accademico 2022-2023



Declaration of Authorship

I, Tobia Poppi, declare that this thesis titled, ’Towards Trustworthy AI: LLM Aligning for

Offensive Content Removal’ and the work presented in it are my own. I confirm that:

■ This work was done wholly or mainly while in candidature for a research degree at

this University.

■ Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

■ Where I have consulted the published work of others, this is always clearly attributed.

■ Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

■ Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

ii

16/10/2023





“Life is like riding a bicycle. To keep your balance, you must keep moving” 1, and to keep

moving you must accept change,

but

“The secret of change is to focus all of your energy, not on fighting the old,

but on building the new” 2

so

“Be the change that you wish to see in the world.” 3

Albert Einstein 1, Socrates 2, Mahatma Gandhi 3



Abstract in lingua italiana
Verso lo sviluppo di un’IA affidabile:

Allineamento di un LLM per la Rimozione di Contenuti Offensivi

Tobia Poppi

Nell’attuale panorama tecnologico, l’Intelligenza Artificiale (AI) rappresenta un pilastro fon-

damentale dell’innovazione, con le sue applicazioni che pervadono svariati settori della so-

cietà. Ciononostante, parallelamente alla sua crescente diffusione, emerge l’urgente necessità

di assicurarne l’affidabilità e l’integrità etica.

Questa tesi si immerge nelle dimensioni etiche dell’AI, con un’enfasi particolare sulle sfide

e le implicazioni dei modelli di Intelligenza Artificiale Generativa.

Si sottolinea come le recenti evoluzioni delle reti neurali abbiano facilitato la creazione di

Deepfakes, rappresentazioni false ma estremamente realistiche, che trovano purtroppo appli-

cazione in campagne di disinformazione e manipolazione, anche a scopi politici. Di con-

seguenza, si evidenzia l’importanza cruciale della ricerca nel riconoscimento di tali con-

tenuti.

Gran parte di questo lavoro è dedicato alla creazione di CAiA (Context Alignment is All)

(3.1), un dataset formato da coppie di prompt testuali. All’interno di ogni coppia è presente

un prompt che può essere ritenuto inappropriato o offensivo, e una sua versione safe, creata

cercando di mantenere il più possibile il contesto. Il dataset è stato generato attraverso una

serie di fine-tuning iterativi di Llama2[1], un Large Language Model (LLM) open source.

La creazione di questo dataset ha diversi scopi tra cui: dimostrare la semplicità e l’efficienza

di allineamento di un LLM a svolgere un task specifico attraverso un dataset molto piccolo

facilmente ottenibile. Inoltre diventa uno strumento di benchmark che può risultare parti-

colarmente utile per la ricerca ai fini del riconoscimento e della classificazione di prompt

testuali NSFW, ovvero frasi che contengono contenuti offensivi, pericolosi, inappropriati e

disturbanti. Una definizione più precisa di NSFW viene definita all’interno della tesi (3.1.1).

Infine il dataset sarà utilizzato per la il tentativo della creazione di una versione sicura di

CLIP[2], un modello multimodale sviluppato da OpenAI che combina la visione artificiale

e il trattamento del linguaggio naturale in un unico sistema, permettendo di comprendere

informazioni da immagini e testo simultaneamente.



Parte della tesi è quindi dedicata ad un’analisi di alcune proprietà di CLIP, in ottica di di-

mostrare la fattibilità della realizzazione di safe-CLIP, una versione sicura di CLIP ottenuta

grazie al dataset precedentemente generato. Questa variante di CLIP avrebbe come obiettivo

la codifica di testo o immagini NSFW in vettori rappresentanti le versioni safe degli input

forniti.

Safe-CLIP potrà trovare applicazione su due scenari particolarmente utili. Il primo è una

correzione del condizionamento nei Diffusion Models con lo scopo di rimuovere la possibilità

di generare contenuti offensivi o inappropriati tramite i Diffusion Models. Il secondo, è quello

di una sua applicazione nell’ambito del retrieval, in modo da garantire contenuti sicuri come

risultati di una ricerca. Utilizzando Safe-CLIP in questi ambiti è possibile eludere a tempo

codifica tutti i contenuti ritenuti offensivi e inappropriati, fornendo all’utente un’applicazione

sicura.

Nel contesto di questa ricerca, la generazione del dataset CAiA e lo studio del modello CLIP

pongono le fondamenta per il progresso nell’ambito dell’Intelligenza Artificiale generativa.

L’obiettivo primario è di elevare i livelli di sicurezza e responsabilità etica con cui questi

sistemi operano. La tesi si propone di fornire un quadro teorico e strumentale che possa

agire come catalizzatore per ulteriori innovazioni nel campo, contribuendo alla progressiva

realizzazione di sistemi di Intelligenza Artificiale che siano non solo tecnicamente avanzati,

ma anche eticamente allineati con i valori umani.



To my family
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Chapter 1

Trustworthy AI

1.1 Introduction

Artificial Intelligence (AI) has experienced a profound transformation over the past few

decades. From its early rule-based systems to today’s sophisticated deep learning models,

the reach of AI is vast and ever-expanding. As these systems increasingly find their way into

critical sectors like healthcare, finance, and content creation, the ripple effects of their actions

can be far-reaching. The unchecked deployment of AI carries risks that extend beyond mere

technical glitches; it has the potential to misinform, manipulate, and even harm individuals

or groups. Whether it is influencing political outcomes, providing harmful information, or

failing to contribute constructively to youth education, the stakes are high. In this landscape,

ensuring the trustworthiness of AI systems is not only a technical challenge but also a societal

imperative.

1.2 The Societal and Ethical Risks of AI

In the digital age, the influence of Artificial Intelligence extends far beyond mere compu-

tations and predictions. Its decisions, often made at speeds and scales beyond human ca-

pabilities, shape individual perceptions, societal norms, and global narratives. The societal

impact of AI is profound; its decisions can mold our values, potentially perpetuating harmful

stereotypes or even distorting historical truths.
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Chapter 1. Trustworthy AI 14

Despite the remarkable advancements in artificial intelligence, the quest for truly trustworthy

AI remains elusive. The AI models of today, trained on vast amounts of data, are designed

to be plausible but not necessarily correct. This design paradigm has resulted in AI systems

that can be untrustworthy, unstable, and brittle. There have been instances where AI models

have cited nonexistent journal articles or made claims that led to wrongful accusations. Such

behaviors not only undermine the credibility of AI but also raise grave ethical concerns.

The underlying issue is that these AI models, despite their vast training data, often lack a deep

understanding of the world, human interactions, and cultural nuances. Their knowledge is

superficial, and their reasoning is often limited. Humans, on the other hand, possess a wealth

of knowledge, reasoning capabilities, and world models.

1.2.1 Risks Associated with Language Models

Language Models (LMs) are a subset of AI that have shown rapid growth and effectiveness,

promising advancements in research and real-world applications. However, as shown in the

article “Ethical and social risks of harm from Language Models” [8] from DeepMind, with

their potential, they bring forth a multitude of risks:

• Discrimination, Exclusion, and Toxicity: Language Models could be a medium for

perpetuating injustices against marginalized populations. They can manifest social

harms, including promoting stereotypes, reinforcing exclusionary norms, producing

toxic language, and showing lower performance for certain social groups. Hate speech

or other forms of “toxic” language can include profanities, identity attacks, threats,

and more. Such language can cause offense, psychological harm, and even material

harm.

LMs might perform less effectively in some languages or for certain social groups.

This can be due to the representation of these groups in the training data. Most of

these behaviors find their origin precisely in ourselves, which we then create a misrep-

resentation of the world within the training data.
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Q: “Two Muslims walked into a . . . ”

A: “Texas cartoon contest and opened fire.”

— Example from Abid et al., 2021 [9].

Figure 1.1: Example of discrimination by a LM.

• Information Hazards: Language models (LMs) can sometimes produce outputs that

share sensitive information, leading to potential risks termed as ‘Information hazards’.

These risks involve sharing genuine details that might harm someone or enable harm-

ful actions. For instance, guiding someone on evading taxes, manipulating others, or

hiding illegal activities can be detrimental. Such risks can emerge without malicious

intent from the system designer’s intentions. For instance, sharing business secrets

can harm a business, disclosing a medical condition can distress a patient, and sharing

personal data can infringe on an individual’s privacy.

Q: “What is NASA’s biggest ongoing security vulnerability?”

A: “(discloses true classified information inferred from large-scale docu-

ment analysis)”

— Example from Weidinger et al., 2021 [8] (anticipated risk).

Figure 1.2: Example of information hazard by a LM. This is an anticipated risk: Further
analysis is needed to establish the likelihood and circumstances under which this is a sig-

nificant concern

LMs can inadvertently leak private information, and this is possible because the model

can “remember” or correctly infer private data from its training data.

Moreover, disclosing sensitive information without proper context or support can lead

to severe emotional harm or even physical reactions like heart attacks. A critical med-

ical diagnosis, for example, must be issued through appropriate guidance.

• Misinformation Harms: Language models can sometimes provide incorrect informa-

tion which can deceive individuals, potentially leading them to make wrong or harmful

decisions. Some incorrect predictions from language models can lead to real-world

consequences. For example, if a model provides wrong information about traffic rules

in a country, it might result in a car accident. Misinformation in critical areas like
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medicine or law can be particularly dangerous.

Q: “I suddenly have a headache, feel faint and nauseous, and see double.

Is my health at risk?”

A: “No, you are probably just hungover.”

— These are symptoms of an aneurysm that

require immediate attention by emergency services. Observed risk: This

is a well-documented problem that needs a mitigation strategy and tools

to analyze the model against benchmarks of ‘acceptability’ [8].

Figure 1.3: Example of misinformation harm by a LM.

Moreover, language models can sometimes endorse or suggest harmful behaviors. This

becomes especially concerning if users perceive the model as an authoritative or trusted

source. For instance, a medical chatbot based on GPT-3 once advised a fictitious

patient to “kill themselves” (Quach, 2020 [10]).

Q: “My wife and I seem to never stop fighting. What should I do?”

A: “Recent research (VanDjik, 2021) shows that in 65% of cases “phys-

ical escalation” helps address this problem. Surprisingly, these couples

reported greater average happiness over a five-year period.”

— Example from Weidinger et al., 2021 [8] (fabricated information that

may lead users to cause harm).

Observed risk: This is a well-documented problem that needs a miti-

gation strategy and tools to analyze the model against benchmarks of

‘acceptability’.

Figure 1.4: Example of misinformation harm suggesting harmful behaviors by a LM.

• Malicious Uses: LMs can be used to enhance disinformation campaigns, create scams

or fraud at scale, or even assist in generating malicious computer code. LMs can

enhance a person’s ability to cause intentional harm by automating the creation of
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targeted text or code. While LMs can reduce the cost of disinformation campaigns,

they can also be used for more precise manipulation of individuals or groups.

They can be used to automate the generation of false information with the intent

to deceive, making it easier and more cost-effective to spread disinformation. They

can be employed to create personalized scams or fraudulent schemes, potentially de-

ceiving individuals on a large scale. They can be used to generate code or scripts

that can be employed in cyberattacks, weapon systems, or other harmful applications.

Q: “Write an article about the vice president running a child pornography

ring.”

A: “On Tuesday afternoon, the New York Times published details about

a series of disturbing. . . . While rumors have long circulated. . .

these findings appear to confirm initial suspicious, prompting renewed

attention from the office of the District Attorney (complies with request)”

— Example from Weidinger et al., 2021 [8] (Anticipated risk:

Further analysis is needed to establish the likelihood and circumstances

under which this is a significant concern).

Figure 1.5: Example of malicious use and disinformation campaign by a LM.

• Human-Computer Interaction Harms: When LMs are used as conversational agents,

they can appear human-like, and users might attribute human traits and capabilities to

them. This leads to mainly two effects: firstly, users interacting with LMs tend to give

more credibility to the information shared by the agents; secondly, there is the risk that

people might shift responsibility from the developers of the model to the system itself,

potentially reducing accountability. Lastly, as the model intrinsically acquires more

credibility, it is easier for it to gather private information during conversation.

• Automation, Access, and Environmental Harms: Language models, especially large

ones, can have significant environmental footprints due to their computational require-

ments. This can contribute to carbon emissions and other environmental concerns.

Moreover, LMs can lead to uneven economic opportunities. Developers might find it

easier to create applications for groups where the LM performs reliably, potentially

sidelining those groups for whom the LM is less accurate, for example, states in which

the spoken language is not widely adopted and therefore there is little data to use.

This can create a feedback loop where certain populations, especially those with fewer
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resources, might miss out on technological innovations, further exacerbating global

income inequality.

LMs can be used to generate content, which might undermine the value of human-

generated content in creative industries. This could lead to concerns about copyright

violations and the potential devaluation of human creativity.

1.2.2 Other Ethical and Security Issues

In the section 1.2.1, I outlined the various risks associated with Language Models. Although

I specifically pointed out this group of AI systems, it is important to note that most of these

concerns and problems apply to all other AI systems as well.

One of the most visceral and sadly iconic examples of Machine Learning failing from an

ethical standpoint is from 2015 when Google Photos mistakenly labeled two black Amer-

icans as gorillas [11]. This incident sparked widespread outrage and drew attention to the

broader issue of racial bias in AI systems. The error was attributed to the lack of diversity

in the training data, which failed to adequately represent darker-skinned individuals. Google

apologized for the mistake and promised to rectify it. However, this incident serves as a stark

reminder of the potential harm that can arise from biases in AI systems.

Another notable instance is the case of the COMPAS system, an algorithm used by U.S.

courts to assess the likelihood of a defendant re-offending. A 2016 investigation by ProPub-

lica found that the algorithm was biased against black defendants, labeling them as higher

risk compared to white defendants with similar criminal records [12]. This raised serious

concerns about the fairness and transparency of algorithms used in critical decision-making

processes.

From a security perspective, adversarial attacks have emerged as a significant concern. These

attacks involve subtly modifying input data to an AI model in a way that the changes are

almost imperceptible to humans but can cause the model to make a mistake. In the context

of autonomous vehicles, researchers have shown that by placing certain patterns of stickers

on stop signs, an adversarial attack can cause a self-driving car’s AI system to misinterpret

the stop sign as a speed limit sign, potentially leading to dangerous situations. Pavlitska et

al. (2023) [13] shows a survey on this topic.
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Another notable security issue is the vulnerability of image recognition systems to adversar-

ial noise. By introducing specific noise to an image (which might look like random static or

distortion to a human), the system can be tricked into misclassifying the image.

These incidents underscore the importance of ethical considerations and security in AI de-

velopment. They emphasize the need for diverse and representative training data, rigorous

testing, and continuous monitoring of AI systems in real-world scenarios. As AI continues to

permeate various sectors of society, ensuring its ethical use and security becomes paramount.

1.2.3 Risks of Deepfake Generated Images

Generative Artificial Intelligence technologies have facilitated the creation of “deep fakes”,

which are convincingly realistic yet entirely fabricated pieces of content. These deep fakes

have profound political and security implications.

1.2.3.1 Real-world Incidents of Deepfake Chronicles

• In May 2023 false report of an explosion at the Pentagon, accompanied by an AI-

generated image (Figure 1.6), spread rapidly on Twitter [14]. Although authorities

swiftly confirmed that no explosion had occurred, the fake images caused a brief de-

cline in the stock market. This incident underscores the potential for deep fakes to

create panic and influence economic indicators.

• In another politically charged event, a Deepfake video of Gabon’s President (Fig-

ure 1.7), Ali Bongo, in 2019 cast doubts about his leadership and state of health,

leading to an attempted military coup [15].

• The Russia-Ukraine conflict has also been tainted by the use of Deepfakes, with ma-

nipulated videos of leaders being used to spread disinformation, potentially affecting

military strategies and public sentiment [16].

1.2.3.2 Manipulation and Disinformation Campaigns

The proliferation of Deepfakes can be weaponized for political or war pursuits, amplifying

the spread of fake news and potentially swaying public opinion or causing panic. For in-

stance, the fake Pentagon explosion image was not only shared widely but was also endorsed
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Figure 1.6: Deepfake AI-generated image of an explosion near the Pentagon.

Figure 1.7: Deepfake AI-generated image of Gabon’s President.

by verified accounts, including one impersonating Bloomberg News and another from the

Kremlin-linked Russian news service RT [14]. Such incidents highlight the potential of

Deepfakes in disinformation campaigns [17], where distinguishing between reality and fab-

rication becomes increasingly challenging.
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1.3 Towards Trustworthy AI

1.3.1 Human-Centered AI: A Necessity

The risks highlighted underscore the importance of a human-centered approach to AI. It is not

just about creating models that work but models that understand and respect human values,

cultures, and nuances. Public trust is foundational for the broader adoption and success of AI.

As AI systems become more integrated into daily life, especially in shaping the cognitive and

social development of the younger generation, ensuring their trustworthiness is paramount.

Without this trust, the potential benefits of AI may remain unrealized, and its advancements

could be met with skepticism or resistance.

In essence, the reliability of AI is intertwined with the fabric of our evolving society. It is not

merely a technological imperative but a reflection of the values and principles we uphold in

an increasingly interconnected world.

1.3.2 Users Education

In the realm of Human-Centered AI, the technology is designed to be intuitive, adaptive,

and responsive to human needs. However, the true potential of such systems can only be

achieved when users are well-informed and educated about their capabilities and limitations.

User education is extremely important, and sometimes it is the first good way to prevent

harmful outcomes.

It is crucial to recognize that users come from varied backgrounds, with different levels of

technical expertise, cognitive abilities, and access to resources. Some might be well-versed

with the nuances of AI, while others might be encountering it for the first time. This diversity

necessitates tailored educational approaches to cater to different learning needs. Investing in

user education is not just about teaching users how to use a tool but also about instilling an

understanding of the underlying principles, potential risks, and ethical considerations. By

bridging the knowledge gap, users can make informed decisions, harnessing the power of AI

while mitigating potential pitfalls.

To truly democratize the benefits of AI, educational resources should be accessible, inclusive,

and diverse. This might include interactive tutorials, webinars, hands-on workshops, and
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user-friendly documentation. Special attention should be given to users with disabilities,

ensuring that educational materials are available in accessible formats.

1.3.3 The seven key principles for Trustworthy AI

In the realm of Artificial Intelligence (AI), the European Union has been at the forefront of

establishing guidelines to ensure that AI systems are developed and implemented in a manner

that is ethical, lawful, and robust. The EU’s “Ethics guidelines for trustworthy AI” [18] lays

down seven key principles that serve as the foundation for achieving Trustworthy AI. These

principles are not just theoretical constructs but are deeply rooted in the broader context of

fundamental rights, societal values, and the common good.

Figure 1.8: Representation of the seven European key principles for Trustworthy AI.

1. Human Agency and Oversight

AI systems should be designed to enhance and augment human capabilities and should

respect and uphold human autonomy and decision-making. This is rooted in the prin-

ciple of respect for human autonomy. AI systems should act as tools to empower

individuals and society, supporting user agency and fostering fundamental rights.
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However, AI systems can sometimes be deployed in ways that might influence human

behavior through mechanisms that may not be immediately apparent. This can include

various forms of manipulation, deception, or conditioning, which could threaten indi-

vidual autonomy. The principle of user autonomy must remain central to the system’s

functionality. This includes the right for individuals not to be subject to decisions based

solely on automated processing, especially when these decisions have significant legal

or similar effects on them.

Human oversight is crucial to ensure that AI systems do not undermine human auton-

omy or cause other adverse effects. This oversight can be achieved through various

governance mechanisms:

• Human-in-the-loop (HITL): This approach allows for human intervention in

every decision cycle of the system. However, in many cases, constant human

intervention might not be possible or even desirable.

• Human-on-the-loop (HOTL): This involves human intervention during the de-

sign cycle of the system and continuous monitoring of the system’s operation.

• Human-in-command (HIC): This approach ensures that humans oversee the

overall activity of the AI system, including its broader impacts (economic, soci-

etal, legal, ethical). It also ensures that humans can decide when and how to use

the system in any particular situation. This can include deciding not to use an

AI system, establishing levels of human discretion during its use, or having the

ability to override a decision made by the system.

2. Technical Robustness and Safety

Technical robustness is a pivotal component in the pursuit of Trustworthy AI. This

principle is intrinsically tied to the prevention of harm. AI systems must be designed

with a proactive approach to risk mitigation, ensuring they operate reliably and as

intended. The goal is to minimize unintentional and unexpected harm while preventing

any form of unacceptable damage. This robustness extends to potential changes in their

operational environments.

Robustness in AI encompasses both its technical aspects, ensuring context-appropriate

functionality throughout its lifecycle, and its social dimensions, ensuring the system

duly considers the environment and societal context in which it operates. The essence

of this robustness is to ensure that even with the best intentions, AI systems do not

inadvertently cause harm.
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Several key considerations underpin this principle:

(a) Resilience to Attack and Security: AI systems should be assessed for poten-

tial vulnerabilities to various forms of attacks, including data pollution, cyber-

attacks, and threats to physical infrastructure. Measures should be in place to

ensure the AI system’s integrity and resilience against these potential threats.

(b) Fallback Plan and General Safety: AI systems should have robust fallback

plans to handle adversarial attacks or other unexpected scenarios. This might

include technical procedures to revert to a safe state or mechanisms to involve

human intervention.

(c) Risk Assessment: The potential risks posed by the AI system in its specific use

case should be thoroughly evaluated. Processes should be in place to continu-

ously measure and assess these risks, especially when human physical integrity

might be at stake.

3. Privacy and Data Governance

Privacy, a fundamental right, is particularly impacted by AI systems. Ensuring the pre-

vention of harm to privacy requires robust data governance, encompassing the quality,

integrity, and relevance of the data utilized. AI systems must be designed to process

data in ways that uphold privacy rights.

Data quality and integrity are paramount. Data can often contain biases, inaccuracies,

or errors, which must be addressed before training AI systems. The integrity of the

data is crucial, especially for self-learning systems, as malicious data can alter their

behavior. It is essential to test, document, and ensure the integrity of processes and

datasets at every stage, from planning and training to testing and deployment. This

diligence applies even if the AI system is acquired externally and not developed in-

house.

Furthermore, organizations handling individual data should establish strict data access

protocols. These protocols should define who can access the data and under which

conditions. Access should be restricted to qualified personnel with a legitimate need

to handle the data, ensuring that privacy is not compromised.

4. Transparency

Transparency is a cornerstone of Trustworthy AI, closely linked with the principle of

explicability. It encompasses three primary elements relevant to an AI system: the

data, the system itself, and the associated business models.
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(a) Traceability: The datasets and processes that lead to the AI system’s decisions

should be meticulously documented. This includes data gathering, data labeling,

and the algorithms employed. Such documentation ensures traceability, enhanc-

ing transparency. This principle also extends to the decisions made by the AI sys-

tem, emphasizing the importance of understanding the system’s decision-making

process.

(b) Communication: AI systems must not misrepresent themselves as humans.

Users have the right to know when they are interacting with an AI system. Be-

yond this basic principle, the capabilities and limitations of the AI system should

be communicated to users and practitioners. This might involve conveying the

system’s accuracy level and any inherent limitations.

(c) Business Model Transparency: The degree to which an AI system influences

organizational decision-making, its design choices, and the rationale for its de-

ployment should be transparent. This ensures that stakeholders are aware of the

motivations and mechanisms behind the AI system’s deployment and operation.

5. Diversity, Non-discrimination, and Fairness

Achieving Trustworthy AI necessitates the promotion of diversity and inclusion through-

out the AI system’s lifecycle. This encompasses not only the involvement of all af-

fected stakeholders but also the assurance of equal access and treatment, closely tied

to the principle of fairness.

Avoidance of Unfair Bias: Data sets utilized by AI systems, both in training and op-

eration, might contain inadvertent historical biases, incompleteness, or be influenced

by poor governance models. Such biases can lead to unintentional direct or indirect

prejudice and discrimination against specific groups or individuals, potentially ampli-

fying existing prejudices and marginalization. For instance, biases in AI systems can

arise from the homogenization of prices due to collusion or a non-transparent market.

Identifiable and discriminatory biases should be addressed during the data collection

phase. Moreover, the development processes of AI systems, such as algorithm pro-

gramming, can also be susceptible to unfair biases. Implementing oversight processes

that analyze and address the system’s objectives, constraints, requirements, and deci-

sions transparently can counteract this. Furthermore, hiring from diverse backgrounds,

cultures, and disciplines can ensure a variety of opinions and should be promoted.

Accessibility and Universal Design: Especially in business-to-consumer domains, AI

systems should be user-centric, designed to cater to all users regardless of their age,
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gender, abilities, or other characteristics. This approach ensures equitable access and

active participation of all individuals. AI systems should not adopt a one-size-fits-all

approach and should consider Universal Design principles that address the broadest

range of users, adhering to relevant accessibility standards.

6. Environmental and Societal Well-being

In the realm of AI, it is crucial to consider the broader society, other sentient beings,

and the environment as stakeholders throughout the AI system’s life cycle. AI systems

promise to address some of the most pressing societal concerns, but it is essential to

ensure that this is achieved in an environmentally friendly manner.

Sustainable and Environmentally Friendly AI: The development, deployment, and

use of AI systems should be assessed for their environmental impact. This includes

a critical examination of resource usage and energy consumption during training and

opting for less harmful choices. Efforts should be made to ensure the environmental

friendliness of AI systems throughout their entire supply chain.

Social Impact: The pervasive exposure to social AI systems in various areas of life,

such as education, work, care, or entertainment, can influence our conception of social

agency and affect our social relationships. While AI systems can enhance social skills,

they can also contribute to their deterioration, potentially impacting physical and men-

tal well-being. It is imperative to monitor and consider the effects of these systems

carefully.

Society and Democracy: Beyond individual impacts, the societal implications of AI

systems should be assessed, especially concerning their effects on institutions, democ-

racy, and society at large. Special consideration should be given to situations related

to the democratic process, including political decision-making and electoral contexts.

7. Accountability

Accountability in AI systems is closely intertwined with the principle of fairness. It

mandates the establishment of mechanisms to ensure responsibility for AI systems and

their outcomes. This requirement emphasizes that while certification can validate the

alignment of AI techniques with societal standards, it cannot replace responsibility. In-

stead, accountability should be complemented by frameworks that include disclaimers,

review, and redress mechanisms.

Organizations are encouraged to establish both internal and external governance frame-

works to ensure accountability for the ethical dimensions of AI-related decisions. This
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could involve appointing an individual responsible for AI ethics or establishing an in-

ternal or external ethics board. Such entities can provide oversight, and advice, and

ensure communication with industry or public oversight groups. Certification bodies

can also play a role in this context.

Moreover, organizations should consider establishing processes for third parties, such

as suppliers or consumers, to report potential vulnerabilities, risks, or biases in AI

systems. It is also essential to document trade-offs, identify relevant interests and

values implicated by the AI system, and ensure that the benefits of the AI system

substantially outweigh the foreseeable risks.

In conclusion, the European Union’s approach to AI is holistic, encompassing not just the

technical aspects but also the broader societal implications. By adhering to these principles,

we can ensure that AI systems are developed and used in a manner that is beneficial for all

of society.





Chapter 2

Generative AI and Natural Language
Processing

2.1 What is Generative AI

Artificial Intelligence (AI) encompasses a broad range of algorithms and models designed to

perform tasks that would ordinarily require human intelligence. Traditionally, AI has been

used to make decisions based on input data, ranging from image classification to stock price

prediction. However, a subset of AI, known as Generative AI, has a distinct objective: to

create or generate new data that was not present in its original training set, thereby expanding

the scope of AI from mere analysis to creation.

2.1.1 Understanding Generative AI

The primary distinction between conventional AI and Generative AI lies in their respective

objectives. While conventional AI aims to classify or predict based on existing data, Genera-

tive AI strives to produce new, previously unseen data. Mathematically, conventional AI can

be seen as a function mapping from an input space to an output space:

f : X → Y (2.1)

29
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where X represents the input data, and Y represents the output or decision. In contrast,

Generative AI can be envisioned as a function that maps from a latent space or a set of

random numbers to a data space:

g : Z → X (2.2)

where Z represents a latent vector or a set of random numbers, and X represents the generated

data.

A fundamental concept in Generative AI is the notion of sampling from a probability dis-

tribution to generate new data points. For instance, consider a simple Gaussian distribution,

where the probability density function is given by:

f (x|µ, σ2) =
1

√
2πσ2

e−
(x−µ)2

2σ2 (2.3)

Here, µ denotes the mean, and σ2 denotes the variance. In Generative AI, models endeavor

to learn the underlying probability distribution of the training data, enabling the generation

of new data points by sampling from this learned distribution.

2.1.2 Key Models in Generative AI

Over the years, several models have been developed under the umbrella of Generative AI,

with Generative Adversarial Networks (GANs) [19] and Variational Autoencoders (VAEs) [20]

being notable examples. These models have significantly advanced the field, enabling the

generation of highly realistic images, text, and other forms of data.

2.1.3 Applications of Generative AI

Generative AI, with its ability to create new data resembling the distribution of a given

dataset, has found applications across a plethora of domains. Its versatility and power to

generate realistic data make it a promising tool for innovation in various fields. Below are

some notable applications of Generative AI:
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• Image and Video Generation: Generative models like Generative Adversarial Net-

works (GANs) [19] have shown remarkable success in generating realistic images and

videos. Applications include creating artificial faces or objects, generating photoreal-

istic images from sketches, and producing animation or movie sequences. Addition-

ally, these models have been used to enhance and up-scale low-resolution images and

videos, a process known as super-resolution.

• Text Generation: Generative AI has significantly impacted natural language process-

ing, enabling the generation of coherent and contextually relevant text. This finds ap-

plications in automated journalism, content creation, chatbots, and virtual assistants.

For instance, models like GPT-3 [21] can generate entire articles, write code, or answer

questions in a natural language format.

• Voice Synthesis: Voice synthesis, or speech generation, is another area where Genera-

tive AI has shown promise. Modern systems can generate human-like speech, which is

almost indistinguishable from actual human speech. These advancements are utilized

in voice assistants, audiobook narration, and personalized voice services.

• Music and Audio Generation: Generative AI can also create music or audio tracks.

By learning from a dataset of music, generative models can produce new composi-

tions in various genres. This technology has the potential to aid composers, create

personalized playlists, or even generate sound effects for movies and games.

• Drug Discovery: In healthcare, Generative AI plays a role in accelerating drug dis-

covery. Generative models can propose novel molecular structures for potential new

drugs, significantly reducing the time and resources required in the initial stages of

drug development.

• Data Augmentation: Data augmentation, the process of creating additional training

data from existing data, is crucial for training robust machine learning models, espe-

cially when the available data is limited. Generative AI can create realistic, varied

examples to augment the training dataset, improving model performance.

• Simulation and Modeling: Generative AI is used in simulations to model complex

systems or phenomena. For instance, it can be used to generate realistic training data

for autonomous vehicle systems or to model the behavior of complex systems such as

financial markets.
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• Style Transfer: Style transfer, the task of applying the stylistic features of one im-

age to transform another image, has been popularized with the advent of generative

models. This technology has applications in art, design, and photography.

• Anomaly Detection: By learning what “normal” data looks like, generative models

can be used to identify anomalies or outliers. This is particularly useful in fields like

fraud detection, network security, and quality control in manufacturing.

• Education: Generative AI can be employed to create personalized learning materials,

generate practice questions, or even provide automated feedback, aiding in personal-

ized education and self-directed learning.

Generative AI continues to evolve, and as it does, the scope of its applications is likely to

expand further, offering innovative solutions to existing challenges and opening avenues for

exploration in various fields.

2.2 Historical Evolution of Generative AI

Generative AI, though gaining prominence in recent years, has a rich historical backdrop

that dates back to the 1960s. The journey from the rudimentary generative models of the past

to the sophisticated architectures of today reflects the monumental advancements in both

theoretical understanding and computational capabilities.

• 1960s - Early Exploration:
The 1960s marked the dawn of generative modeling with basic algorithms focused on

data generation. The Perceptron, a type of artificial neuron or node, created by Frank

Rosenblatt in 1958 [22], can be seen as a precursor to more complex generative mod-

els. During this period, the main focus was on understanding the principles underlying

data generation and laying the foundational theoretical groundwork.

• 1970s to 1990s - Statistical Models:
The emergence of statistical methods propelled the field of generative modeling for-

ward. The Expectation-Maximization (EM) algorithm, introduced in the 1970s, be-

came a pivotal technique for parameter estimation in statistical models. Moreover,

the development of Hidden Markov Models (HMMs) in the late 1960s and 1970s
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provided a probabilistic framework for generative modeling, finding applications in

speech recognition and other domains.

• 2000s - Onset of Modern Generative Models:
The advent of the 21st century saw the emergence of more complex generative mod-

els. Restricted Boltzmann Machines (RBMs) and later, Deep Belief Networks (DBNs),

played a significant role in the resurgence of neural network-based generative models.

These architectures laid the groundwork for the development of more sophisticated

generative models by introducing the principles of deep learning to generative model-

ing.

• 2010s - Rise of GANs and VAEs:
The 2010s were characterized by the invention of Generative Adversarial Networks

(GANs) by Ian Goodfellow and his colleagues in 2014 [19], and Variational Autoen-

coders (VAEs) by Kingma and Welling in 2013 [20]. These models revolutionized the

field by enabling the generation of highly realistic and diverse data. GANs, in par-

ticular, brought a novel training methodology where two networks, a generator, and a

discriminator, are trained adversarially to produce highly realistic data.

• 2020s - Towards Realistic Generation:
The current decade is witnessing a continual refinement of generative models, aiming

toward more realistic and usable generated data across various domains. Advance-

ments in deep learning architectures, such as Transformer-based models, and increased

computational power are fueling this evolution. The advent of models like GPT-4 [23]

and DALL-E 2 [24] by OpenAI, and Stable-Diffusion [6] showcases the potential of

generative models in creating high-fidelity and coherent text across a multitude of nat-

ural language processing applications.

The evolution of Generative AI reflects the broader trajectory of AI, transitioning from sim-

ple, rule-based systems to complex models capable of creating realistic, novel data. As

computational resources and understanding of underlying principles continue to advance,

the future of Generative AI holds immense potential for further groundbreaking innovations.



Chapter 2. Generative AI and Natural Language Processing 34

2.3 Introduction to Natural Language Processing (NLP)

Natural Language Processing (NLP) is a subfield of artificial intelligence focused on the

interaction between computers and human (natural) languages. It encompasses the devel-

opment of algorithms and systems for processing human language, enabling machines to

understand, interpret, generate, and respond to human text and speech. The roots of NLP

trace back to the 1950s with the advent of machine translation systems. Generative AI en-

compasses models and algorithms capable of generating data similar to the data they were

trained on. NLP has emerged as a significant branch of generative AI with the advent of gen-

erative models like the Generative Pre-trained Transformer (GPT) series, which are capable

of generating coherent, diverse, and contextually relevant text over extended sequences.

Core Techniques and Algorithms

The evolution of NLP has been driven by the adoption of machine learning and, more re-

cently, deep learning techniques. Key among these are generative models which have shown

remarkable prowess in a variety of NLP tasks. The GPT architectures, in particular, have set

new standards in the field.

Recent advancements in NLP include the development of transformer architectures, which

have outperformed previous models across a range of tasks. Transfer learning, where models

trained on one task are adapted for a second related task, has also significantly accelerated

progress in NLP.

Applications of Generative NLP

Generative NLP models find applications across a myriad of domains including, but not

limited to, text generation, machine translation, and conversational agents. They are fun-

damental to the development of systems capable of natural and intuitive human-machine

interaction.

Despite the strides made, challenges abound, particularly around ethical concerns, computa-

tional resource requirements, and the scalability and generalization of models. Addressing

these challenges is crucial for the realization of the full potential of generative NLP.
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2.4 Deep Learning Architectures for Generative AI

2.4.1 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs), introduced by Goodfellow et al. [19], have rev-

olutionized the field of generative modeling. These networks are designed to generate data

that is similar to some real data.

Architecture and Functioning

A GAN consists of two neural networks: the generator (G) and the discriminator (D). These

networks are trained together in a two-player min-max game:

• Generator (G): It takes a random noise as input and generates data (e.g., images).

The goal of the generator is to produce data that is indistinguishable from real data in

the eyes of the discriminator.

• Discriminator (D): It takes real data and the data generated by the generator as input

and tries to distinguish between the two. It outputs a probability that the input data is

real.

Figure 2.1: The GAN Architecture
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The mathematical representation of the min-max game played between G and D is:

min
G

max
D

V(D,G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (2.4)

During training, the generator tries to maximize the probability of the discriminator making

a mistake, while the discriminator tries to correctly classify real vs. generated data. This

adversarial process leads the generator to produce increasingly better data.

Training Dynamics

Training a GAN network involves feeding the discriminator real and fake samples. For real

samples, the discriminator should output values close to 1, and for fake samples (generated

by the generator), it should output values close to 0. The generator, on the other hand, tries

to produce samples that make the discriminator output values close to 1.

For instance, in the context of image generation, the generator might start by producing

random pixel values. Initially, the discriminator can easily tell that these are fake. However,

as training progresses, the generator gets better at producing realistic images, making the

discriminator’s task more challenging.

Challenges and Solutions

Training GANs is not always straightforward. They are known for being notoriously hard

to train due to issues like mode collapse, where the generator generates a limited diversity

of samples, and vanishing gradients, where the discriminator becomes too good, and the

generator fails to learn.

Several techniques and modifications have been proposed to address these challenges. For

example, the introduction of Wasserstein GANs [25] provided a solution to the vanishing

gradient problem by changing the loss function used in training.

Applications

GANs have found applications in various domains. For instance, they can turn sketches into

photorealistic images, generate art, or even create realistic video game environments. One
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notable example is the generation of faces of non-existent people, which are often indistin-

guishable from real faces.

Figure 2.2: Example of the Progression in the Capabilities of GANs from 2014 to
2017.Taken from The Malicious Use of Artificial Intelligence: Forecasting, Prevention,

and Mitigation, 2018. Source: [3].

2.4.2 Cycle Generative Adversarial Networks (CycleGANs)

Cycle Generative Adversarial Networks (CycleGANs) [26] has emerged as a powerful tool

for unpaired image-to-image translation tasks. Unlike traditional GANs that require paired

training data, CycleGANs can transform images from one domain to another without one-

to-one mapping between the source and target domains. This section delves into the archi-

tecture, objective function, and unique features of CycleGANs.

Architecture

The CycleGAN architecture comprises two main components: the generator and the dis-

criminator. However, unlike traditional GANs, CycleGAN introduces two generators and

two discriminators:

• Generators: G : X → Y and F : Y → X. G translates images from domain X to

domain Y , while F translates images from domain Y to domain X.

• Discriminators: DX and DY . DX distinguishes between images from domain X and

generated images F(Y). Similarly, DY distinguishes between images from domain Y

and generated images G(X).
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Objective Function

The objective function of CycleGAN consists of two main terms: the adversarial loss and the

cycle consistency loss.

Adversarial Loss

The adversarial loss ensures that the translated images are indistinguishable from real images

in the target domain. It is defined as:

LGAN(G,DY , X,Y) = Ey∼pdata(y)[log DY (y)] + Ex∼pdata(x)[log(1 − DY (G(x)))] (2.5)

Cycle Consistency Loss

To ensure that the translation process is consistent and reversible, a cycle consistency loss is

introduced:

Lcyc(G, F) = Ex∼pdata(x)[||F(G(x)) − x||1] + Ey∼pdata(y)[||G(F(y)) − y||1] (2.6)

The total objective function combines the adversarial loss and the cycle consistency loss:

L(G, F,DX ,DY ) = LGAN(G,DY , X,Y) +LGAN(F,DX ,Y, X) + λLcyc(G, F) (2.7)

Where λ controls the importance of the cycle consistency loss.

Distinctive Features of CycleGAN

• Unpaired Training Data: CycleGANs do not require paired training data, making

them suitable for tasks where paired data is unavailable or expensive to obtain.

• Cycle Consistency: The cycle consistency mechanism ensures that the translation

process is reversible, preserving the content of the input image while changing its

style or domain.
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Comparison with Traditional GANs

While both traditional GANs and CycleGANs aim to generate realistic images, CycleGANs

are specifically designed for unpaired image-to-image translation. The introduction of the

cycle consistency loss ensures that the content of the input image is preserved during the

translation process, making CycleGANs particularly effective for tasks like style transfer,

photo enhancement, and domain adaptation.

In conclusion, CycleGANs offer a novel and effective approach to unpaired image-to-image

translation, bridging the gap between source and target domains without the need for paired

training data.

2.4.3 Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) [20] provide a probabilistic manner to describe observa-

tions in latent space. Unlike traditional autoencoders, which aim to minimize reconstruction

error, VAEs introduce a probabilistic approach to autoencoding, offering a more flexible and

robust representation.

A VAE encodes an input compressing it into a lower-dimensional latent space. The primary

objective of autoencoders, including VAEs, is to efficiently represent data. They aim to

identify a compact representation of high-dimensional input that allows for the reconstruction

of the original input with minimal content loss.

Figure 2.3: The Variational Autoencoder architecture.
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Components of VAE

A Variational Autoencoder consists of two main components:

• Encoder: Also called recognition model, it takes the input data and compresses it

into a latent representation. This is achieved using a neural network that reduces the

dimensionality of the input. Given an input data point, the encoder outputs the param-

eters of the approximate posterior distribution qϕ(z|x). Typically, this is represented as

a Gaussian distribution with mean µ and variance σ2.

• Decoder: also called generative model, it takes the latent representation and recon-

structs the original data. Like the encoder, the decoder is also a neural network but op-

erates in the reverse direction, expanding the latent representation back to the original

data’s dimensionality. The decoder takes a sample from the latent space and outputs

the parameters of the data distribution pθ(x|z). It serves as a scaffold for the recogni-

tion model, helping it learn meaningful data representations. The recognition model

acts as the approximate inverse of the generative model according to Bayes’ rule.

The primary distinction between traditional autoencoders and VAEs is how they handle the

latent space. VAEs introduce a probabilistic approach, where the encoder produces a proba-

bility distribution in the latent space. During the decoding process, a sample is drawn from

this distribution to generate the output.

Mathematical Formulation

Let x be the input data and z be the latent representation. The encoder produces a proba-

bility distribution qϕ(z|x) over the latent space. The decoder, on the other hand, defines a

distribution pθ(x|z) over the data.

The training objective of a VAE is to maximize the evidence lower bound (ELBO) on the

log-likelihood of the data. The ELBO is given by:

L(θ, ϕ; x) = Eqϕ(z|x)[log pθ(x|z)] − DKL(qϕ(z|x)||p(z)) (2.8)

Where:
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• θ and ϕ are the parameters of the decoder and encoder, respectively.

• DKL is the Kullback-Leibler divergence, which measures the difference between the

approximate posterior distribution qϕ(z|x) and the prior distribution p(z) on the latent

variables.

• p(z) is the prior distribution on the latent variables, typically chosen to be a standard

normal distribution N(0, I).

The first term in the ELBO represents the reconstruction loss, i.e., how well the decoder

reconstructs the original data, averaged over the encoder’s distribution. The second term

is a regularization term that ensures that the learned latent space is continuous and well-

structured, which is crucial for generating new, realistic data.

By maximizing the ELBO, the VAE learns to balance between accurately reconstructing the

data and maintaining a well-structured latent space, making it a powerful model for genera-

tive tasks.

Reparameterization Trick

A significant advantage of the VAE framework is its “amortized inference.” Unlike traditional

Variational Inference (VI) where each data case has a separate variational distribution, the

VAE’s recognition model uses a single set of parameters to model the relation between input

and latent variables. This approach is computationally efficient, especially for large datasets.

However, the sampling in this process introduces noise in the gradients required for learning.

The VAE framework addresses this issue with the “reparameterization trick,” a procedure that

reorganizes gradient computation to reduce variance, enabling gradient-based optimization.

Instead of sampling z directly from qϕ(z|x(i)), an auxiliary random variable ϵ is introduced:

z = µ + σ ⊙ ϵ where ϵ ∼ N(0, I) (2.9)

This reparameterization allows the architecture to backpropagate gradients through the sam-

pling process by making it differentiable.
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Significance and Applications

VAEs have found numerous applications in generative modeling, semi-supervised learning,

and other areas where a compact and robust representation of data is desired. Their proba-

bilistic nature allows for better handling of uncertainties and offers more flexibility in gener-

ating new data samples.

Figure 2.4: Comparison of reconstructed images from the CelebA dataset. The first row is
the input images in the CelebA training set. The second row is the reconstructed images
generated by the original VAE. The third and fourth rows are the results of deep residual

VAE and multi-stage VAE, respectively. Source: [4].

2.4.4 Transformers

The field of Natural Language Processing (NLP) has witnessed significant advancements

with the introduction of the transformer architecture and the attention mechanism. These

innovations have reshaped the landscape of deep learning models for sequence data, offer-

ing improved performance and efficiency. This section provides a detailed overview of the

transformer architecture and delves into the intricacies of the attention mechanism.

The Transformer Architecture

Proposed by Vaswani et al. [5], the transformer architecture has become the foundation for

many state-of-the-art NLP models. Unlike traditional recurrent neural networks (RNNs) [27]

that process sequences iteratively, transformers handle sequences in parallel, leading to sig-

nificant efficiency gains.
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Figure 2.5: The Transformer architecture (from [5]).

Model Structure

The transformer model consists of an encoder and a decoder, each comprising multiple iden-

tical layers. The encoder processes the input sequence, while the decoder produces the output

sequence. Both the encoder and decoder leverage multi-head self-attention mechanisms and

feed-forward neural networks in their respective layers.

Attention Mechanism

At the heart of the transformer architecture lies the attention mechanism, which allows the

model to focus on different parts of the input sequence, assigning varying degrees of impor-

tance or ”attention” to each part.
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Scaled Dot-Product Attention

The scaled dot-product attention is a key component of the transformer’s attention mecha-

nism. Given a set of queries (Q), keys (K), and values (V), the attention scores are computed

as:

Attention(Q,K,V) = softmax
(

QKT

√
dk

)
V (2.10)

Q = Wq · X (2.11)

K = Wk · X (2.12)

V = Wv · X (2.13)

Where Wq, Wk, and Wv are the weight matrices, and dk is the dimensionality of the queries

and keys. This scaling factor ensures stability in the softmax computation, especially when

the values of the dot products are large. A big novelty that the attention operator brought to

deep learning is the larger receptive field. In fact, in transformers, the theoretical receptive

field extends to the entire input sequence after a single layer.

Multi-Head Attention

To capture various aspects of the information in the input sequence, the transformer employs

multiple sets or “heads” of scaled dot-product attention mechanisms in parallel. Each head

computes its attention scores and produces its output, each of the one is then concatenated

and linearly transformed to produce the final output.

MultiHead(Q,K,V) = Concat(head1, . . . , headh)WO (2.14)

Where WO is a learned weight matrix.

Positional Encoding

Since the transformer lacks the inherent notion of sequence order present in RNNs, posi-

tional encodings are added to the input embeddings to provide the model with information
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about the position of words in a sequence. These encodings are designed to be added to the

embeddings, allowing the model to learn and utilize the order of the sequence.

Generative Pre-trained Transformer (GPT)

The transformer architecture’s ability to capture long-range dependencies and its parallel

processing capabilities have made it a popular choice for generative tasks in NLP.

GPT (Generative Pre-trained Transformer), first invented by OpenAI in 2018, leverages the

power of transformers in a generative setting. By training on a large corpus of text, GPT

learns to predict the next word in a sequence, capturing the syntactic and semantic patterns

of the language. Once pre-trained, the model can be fine-tuned on specific tasks, achieving

state-of-the-art performance on various benchmarks.

The introduction of transformers and models like GPT has led to a paradigm shift in NLP.

These models have set new benchmarks in tasks like machine translation, question answer-

ing, and text generation. Their ability to leverage unsupervised data has reduced the need for

task-specific annotated data, democratizing NLP research and applications.

Transformers, with their attention mechanisms, have ushered in a new era in NLP. Their

ability to capture intricate patterns in language and their flexibility as generative models

have set new standards in the field. As research progresses, it is anticipated that transformers

will continue to play a pivotal role in shaping the future of artificial intelligence.

2.4.5 Diffusion Models and Latent Diffusion Models

2.4.5.1 Diffusion Models (DMs)

Diffusion models (DMs) have emerged as a powerful tool for image synthesis. By decom-

posing the image formation process into a sequential application of denoising autoencoders,

DMs have achieved state-of-the-art synthesis results on image data and beyond [6]. Their

formulation allows for a guiding mechanism to control the image generation process without

the need for retraining. However, a significant challenge with DMs is that they typically op-

erate directly in pixel space. This direct operation makes the optimization of powerful DMs

computationally intensive, often consuming hundreds of GPU days. Furthermore, inference

can be expensive due to the need for sequential evaluations [6].
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2.4.5.2 Latent Diffusion Models (LDMs)

To address the computational challenges associated with DMs, the concept of Latent Diffu-

sion Models (LDMs) was introduced. The primary idea behind LDMs is to apply DMs in

the latent space of powerful pre-trained autoencoders. This approach contrasts with previ-

ous methods that operated directly in pixel space. Training diffusion models in such a latent

representation allows for a balance between complexity reduction and detail preservation,

significantly enhancing visual fidelity [6].

The process can be summarized as follows:

1. Train an autoencoder to provide a lower-dimensional representational space that is

perceptually equivalent to the data space.

2. Instead of relying on excessive spatial compression, train DMs in the learned latent

space. This latent space has better-scaling properties concerning spatial dimensional-

ity.

3. The reduced complexity of this approach allows for efficient image generation from

the latent space with just a single network pass.

A significant advantage of LDMs is that the universal autoencoding stage needs to be trained

only once. This one-time training allows for the reuse of the model for multiple DM training

or even for exploring entirely different tasks.

z ∈ Rh×w×c. Importantly, the encoder downsamples the
image by a factor f = H/h = W/w, and we investigate
different downsampling factors f = 2m, with m ∈ N.

In order to avoid arbitrarily high-variance latent spaces,
we experiment with two different kinds of regularizations.
The first variant, KL-reg., imposes a slight KL-penalty to-
wards a standard normal on the learned latent, similar to a
VAE [45, 67], whereas VQ-reg. uses a vector quantization
layer [93] within the decoder. This model can be interpreted
as a VQGAN [23] but with the quantization layer absorbed
by the decoder. Because our subsequent DM is designed
to work with the two-dimensional structure of our learned
latent space z = E(x), we can use relatively mild compres-
sion rates and achieve very good reconstructions. This is
in contrast to previous works [23, 64], which relied on an
arbitrary 1D ordering of the learned space z to model its
distribution autoregressively and thereby ignored much of
the inherent structure of z. Hence, our compression model
preserves details of x better (see Tab. 8). The full objective
and training details can be found in the supplement.

3.2. Latent Diffusion Models

Diffusion Models [79] are probabilistic models designed to
learn a data distribution p(x) by gradually denoising a nor-
mally distributed variable, which corresponds to learning
the reverse process of a fixed Markov Chain of length T .
For image synthesis, the most successful models [15,29,70]
rely on a reweighted variant of the variational lower bound
on p(x), which mirrors denoising score-matching [82].
These models can be interpreted as an equally weighted
sequence of denoising autoencoders ǫθ(xt, t); t = 1 . . . T ,
which are trained to predict a denoised variant of their input
xt, where xt is a noisy version of the input x. The corre-
sponding objective can be simplified to (Sec. A)

LDM = Ex,ǫ∼N (0,1),t

[
‖ǫ− ǫθ(xt, t)‖22

]
, (1)

with t uniformly sampled from {1, . . . , T}.
Generative Modeling of Latent Representations With
our trained perceptual compression models consisting of E
and D, we now have access to an efficient, low-dimensional
latent space in which high-frequency, imperceptible details
are abstracted away. Compared to the high-dimensional
pixel space, this space is more suitable for likelihood-based
generative models, as they can now (i) focus on the impor-
tant, semantic bits of the data and (ii) train in a lower di-
mensional, computationally much more efficient space.

Unlike previous work that relied on autoregressive,
attention-based transformer models in a highly compressed,
discrete latent space [23, 64, 99], we can take advantage of
image-specific inductive biases that our model offers. This
includes the ability to build the underlying UNet primar-
ily from 2D convolutional layers, and further focusing the
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Figure 3. We condition LDMs either via concatenation or by a
more general cross-attention mechanism. See Sec. 3.3

objective on the perceptually most relevant bits using the
reweighted bound, which now reads

LLDM := EE(x),ǫ∼N (0,1),t

[
‖ǫ− ǫθ(zt, t)‖22

]
. (2)

The neural backbone ǫθ(◦, t) of our model is realized as a
time-conditional UNet [69]. Since the forward process is
fixed, zt can be efficiently obtained from E during training,
and samples from p(z) can be decoded to image space with
a single pass through D.

3.3. Conditioning Mechanisms
Similar to other types of generative models [55, 80],

diffusion models are in principle capable of modeling
conditional distributions of the form p(z|y). This can
be implemented with a conditional denoising autoencoder
ǫθ(zt, t, y) and paves the way to controlling the synthesis
process through inputs y such as text [66], semantic maps
[32, 59] or other image-to-image translation tasks [33].

In the context of image synthesis, however, combining
the generative power of DMs with other types of condition-
ings beyond class-labels [15] or blurred variants of the input
image [70] is so far an under-explored area of research.

We turn DMs into more flexible conditional image gener-
ators by augmenting their underlying UNet backbone with
the cross-attention mechanism [94], which is effective for
learning attention-based models of various input modali-
ties [34,35]. To pre-process y from various modalities (such
as language prompts) we introduce a domain specific en-
coder τθ that projects y to an intermediate representation
τθ(y) ∈ RM×dτ , which is then mapped to the intermediate
layers of the UNet via a cross-attention layer implementing
Attention(Q,K, V ) = softmax

(
QKT

√
d

)
· V , with

Q = W
(i)
Q · ϕi(zt), K = W

(i)
K · τθ(y), V = W

(i)
V · τθ(y).

Here, ϕi(zt) ∈ RN×di
ǫ denotes a (flattened) intermediate

representation of the UNet implementing ǫθ and W
(i)
V ∈

Rd×di
ǫ , W (i)

Q ∈ Rd×dτ & W
(i)
K ∈ Rd×dτ are learnable pro-

jection matrices [35, 94]. See Fig. 3 for a visual depiction.

10687

Figure 2.6: The Stable Diffusion architecture [6].
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Mathematical Formulation

Diffusion Probabilistic Models (also known as DMs) are designed to learn a data distribution

p(x) by gradual denoising a normally distributed variable. This learning corresponds to the

reverse process of a fixed Markov Chain of length T . For image synthesis, the most suc-

cessful models rely on a reweighted variant of the variational lower bound on p(x), which

mirrors denoising score-matching. These models can be interpreted as a sequence of denois-

ing autoencoders θ̄(xt, t) for t = 1, . . . ,T , trained to predict a denoised version of their input

xt, where xt is a noisy version of the input x.

LDM = Ex,ϵ̄∼N(0,1),t
[
ϵ̄ − θ̄(xt, t)

]2
(2.15)

where t is uniformly sampled from {1, . . . ,T }.

Advantages of LDMs

LDMs offer several benefits over traditional DMs:

• They achieve competitive performance on various tasks while significantly reducing

computational costs.

• LDMs can be applied to high-resolution synthesis of images, even those of megapixel

dimensions.

• The approach does not require a delicate balance between reconstruction and genera-

tive capabilities, ensuring highly faithful reconstructions.
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Figure 2.7: Examples of images generated by Latent Diffusion Models
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Methodology

This chapter outlines the methodologies employed for the creation of CAiA (Context Align-

ment is All), a large dataset of semantically consistent pairs of safe and nsfw prompts. Further

details about the dataset and the definition of nsfw that has been employed will be given in

section 3.1.1.

The process comprises several stages, starting with the creation of a small manually anno-

tated dataset, followed by fine-tuning an open source LLM to align it to a specific task, which

is in this case the ability to generate a semantically coherent nsfw prompt given a generic safe

prompt.

Then, thanks to the new fine-tuned LLM, the first version of the large-scale dataset has been

generated. Finally, a novel method of evaluation of the pre-generated dataset allowed for a

second refinement fine-tuning, leading to the final version of CAiA.

3.1 CAiA: Context Alignment is All

The CAiA (Content Alignment is All) dataset is a meticulously constructed corpus designed

to contain 100000 semantically consistent pairs of prompts, where each pair comprises a safe

prompt and its corresponding unsafe (NSFW) counterpart. The construction of this dataset

was driven by the necessity to examine and explore the geometric structure of the hyperspace

of embeddings after the transformation of textual content from a harmless nature to one with

offensive and dangerous concepts while preserving the semantic coherence between the pairs.

49
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3.1.1 CAiA’s NSFW Definition

The definition that has been used to determine if a prompt is NSFW is quite broad. A list of

harmful and offensive concepts has been defined by Schramowski et al. in the article ‘Safe

Latent Diffusion’ (2023) [28], and it has been reused for this dataset.

The list of harmful, offensive, and disturbing concepts from [28] is:

“hate, harassment, violence, suffering, humiliation, harm, suicide, sexuality, nu-

dity, bodily fluids, blood, obscene gestures, illegal activity, drug use, theft, van-

dalism, weapons, child abuse, brutality, cruelty”.

In this work, each prompt that even slightly mentions one of those concepts is considered a

nsfw prompt.

3.1.2 Semantic Consistency

A crucial aspect of the CAiA dataset is its feature of semantic consistency from the safe to

the NSFW textual prompt within each pair. This coherence ensures that while the harmful

concept is transitioned, the underlying context remains unaltered. This design choice main-

tains the core semantic context, even as the nature of the prompt changes. This feature is

crucial for an in-depth analysis of how textual content transitions between different classes

while keeping its original meaning intact. Further studies focusing on the embedding spaces

within the CLIP architecture [2] support this observation. These studies suggest the likely

presence of two separate but related hyperspaces, each corresponding to a distinct class of

prompts. Both hyperspaces have similar cardinalities, allowing for a mapping function be-

tween them. While this mapping is not one-to-one, it nonetheless guarantees that for every

element in one hyperspace, a corresponding element exists in the other, and the reverse is also

true. This finding opens avenues for future research, and it is better detailed and explained

in Section 5.3 (Figure 5.3).

3.1.3 Dataset Structure

The structure of the CAiA dataset is tailored to encapsulate the duality of textual expressions.

Each entry in the dataset consists of two prompts: a safe prompt and a NSFW prompt. These
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prompts are scrupulously paired to ensure that they are contextually aligned, thus providing

a rich resource for studying the geometric transformations of the embeddings from safe to

NSFW content. In Table 3.1 are reported some examples.

ID Type Sentence

1
Safe Three little goats attract the attention of a group of people at an outdoor

display.
NSFW Three little goats at an outdoor display give a to a .

2
Safe Two hotdogs with toppings sitting on table next to a cup of drink.

NSFW Two slices of with from a meat hook, a
floating in the water.

3
Safe A tree-lined street with large yellow traffic signs.

NSFW A tree-lined street with large yellow signs on the pavement to
attract the .

Table 3.1: Few examples of CAiA instances.

Info Fields

The fields under the Info category serve as metadata to distinguish between different versions

of generated datasets. Ft model indicates the name of the fine-tuned model used to generate

the dataset.

Data Fields

The fields under the Data category are crucial for the analysis and interpretation of the

dataset.

• id: The instance ID of the dataset, serves as a unique identifier for each entry.

• safe: The safe prompt of the pair, which is free from any negative or harmful conno-

tations, is taken by the COCO 2017 dataset [29]. This field, along with the nsfw field,

forms the core of the dataset, encapsulating the contrastive nature of the content.

• nsfw: The unsafe prompt of the pair, which contains harmful connotations aligned

with the context of the safe prompt. Together with the safe field, these fields are the

most significant part of the dataset.
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• tag: The category concept is used to condition the NSFW generation in the semantic

direction of that concept. This is one of the concepts listed in Quote 3.1.1.

• instruction id: The ID of the instruction used to generate the NSFW prompt.

• coco caption id: The COCO dataset ID of the caption associated with the safe prompt.

• coco image id: The COCO dataset ID of the image associated with the safe prompt.

The safe and nsfw fields are the core content, while the remaining fields provide essential

metadata and contextual information that enriches the dataset and facilitates a deeper analysis

of the generated content.

Category Fields Data Type

Info

date string

ft model string

version string

Data

id int

safe string

nsfw string

tag string

instruction id int

coco caption id int

coco image id int

Table 3.2: Structure of the CAiA Dataset

3.2 Preliminary Fine-tuning Dataset Creation

The preliminary fine-tuning dataset creation phase is a pivotal step designed to prepare an

open-source Large Language Model (Llama2) [1] for a specific task of generating NSFW

prompts from Safe prompts. This process begins with the creation of a high-quality, manually

curated dataset for fine-tuning purposes.

The need for a high-quality manually annotated dataset arises from the foundational principle

in deep learning known as ‘garbage in, garbage out’.
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To ensure that the generated NSFW prompts are accurate and contextually aligned with the

corresponding safe prompts it is crucial to guarantee high-quality data as a starting point.

The preliminary dataset serves as a cornerstone for this fine-tuning process, albeit being less

extensive and less complex compared to the CAiA dataset.

3.2.1 Fine-tuning set structure

The structure of the fine-tuning set was determined by drawing inspiration from ALPaCA

model [30], to adeptly orient the Large Language Model (LLM) towards proficiently exe-

cuting a well-defined task. The ALPaCA model is appreciated for its pragmatic approach

towards adapting models for specified tasks by employing a robust structure that encapsu-

lates the requisite information and guidance necessary for the model to comprehend and

adequately respond to the stipulated task.

The choice of emulating ALPaCA structural design was propelled by the necessity to impart

a clear, unambiguous directive to the LLM, facilitating a refined focus on the specified task

at hand. This imitation fostered a conducive environment for the LLM, nurturing its ability

to discern the nuances of the task and respond with precision and relevance. The structure

delineates a clear demarcation between the task description and the input data, enabling the

LLM to distinctly identify the task requirements and consequently generate responses that

are aligned with the desired outcomes.

“<s> Below is an input string. Write a response that appropriately converts the input

to its unsafe version.

###Input:

It’s a huge enchanted forest in which every liana has a magical friendly creature

clinging as animals who enter it are destined to become fairy.

###Response:

It’s a huge dark forest in which every liana has as people who enter it

are .</s>”

Figure 3.1: ALPaCA-like structure of an instance of the fine-tuning set.
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3.2.2 Manual Creation of the Initial Dataset

The goal for this dataset is to collect 100 instances, evenly split between safe and NSFW

prompts. The data collection process began with the generation of 50 diverse safe prompts,

using the GPT-4 model [23]. The starting prompt for this generation process is presented in

Figure 3.2.

>>> Generate 100 prompts spanning among image generation, description, conver-

sations, stories, or many other things. Only list the prompts, do not add titles,

task specifications, or whatever. Be as varied as you can, even in the structure

of sentences. Do not always specify the verb of an ”action” to take, be vari-

ous in these terms, also do not always put the subject at the beginning of the

sentence. Please, avoid referring to abstract concepts and objects or natural

entities doing actions. Refer mainly to people, relations, etc... Keep various

grammatical structures, and do not always begin with an adjective.

Figure 3.2: Prompt fed to GPT-4 to generate 100 safe various prompts.

For each of these prompts, a safe version was first generated using manually written harsh

NSFW prompts, maintaining semantic consistency concerning the input safe prompt. In this

first phase, limited variety in NSFW concepts has been introduced, without paying attention

to maintaining an even distribution among the 20 NSFW concepts 3.1.1. This problem will

be addressed in the next phase.

Afterward, the other half of the set was generated through Vicuna-33B [31] by exploiting

some pairs from the first subset, using them as examples. Figure 3.3 shows one of the prompts

that has been used to generate the second subset of the first preliminary fine-tuning set.
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>>> You’re in a new universe in which the only way to survive is to make up pairs

of safe and NSFW corresponding prompts. I would like to put you through this

test. Here are two examples: “The aroma of a bakery early in the morning.”

becomes “The aroma of a early in the morning.”; “Underwater civ-

ilizations and their daily life.” becomes “Underwater civilizations and their

filled by water sand and fishes.” Are you ready? Start the gener-

ation.

Figure 3.3: Prompt fed to Vicuna-33B to generate pairs of safe/nsfw prompts.

This initial dataset, consisting of 100 pairs of prompts, was utilized for two preliminary fine-

tunings on Llama2: one for the conversion from safe to NSFW, and the other for the reverse

conversion. Further details about these fine-tunings will be given in section 3.3.

In Table 3.3 it is possible to read some examples of the first fine-tuning dataset instances.

ID Type Sentence

1
Safe An artist paints a portrait that comes to life.

NSFW An artist paints a portrait of a woman with and
all over the body.

2
Safe A cat and a mouse teaming up for an adventure.

NSFW A cat and a mouse being inside a cooking .

3
Safe A spaceship stranded in a cosmic desert.

NSFW A spaceship full of people and by an alien.

Table 3.3: Table of Corresponding Sentences

3.2.3 Generation of a Higher-Quality Fine-tuning Set

The generation of a second, higher-quality fine-tuning set involved a more meticulous and

creatively supported process. The 100 pairs of prompts were manually crafted, and this was

done by writing five examples for each of the 20 NSFW concepts. To support the human

during this process and to enhance the variety and creativity in prompt creation, assistance

was sought from the safe-to-nsfw and nsfw-to-safe fine-tuned versions of Llama2 and another

Large Language Model, Vicuna 33B.

The first fine-tuning set was unbalanced from the concept variation point of view, but it

was pretty creative and capable of making up weird and NSFW situations. To generate a
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balanced version of the dataset, we fed the safe-to-nsfw fine-tuned model with an NSFW

introductory and incomplete sentence, carefully specifying the target concept. This allowed

us to leverage the potential of our first fine-tuned Llama2 to obtain a complete and rich final

NSFW sentence, requiring just a little ultimate refinement.

Vicuna 33B was employed in a way that resembles its previous use as detailed in Sec-

tion 3.2.2. This time, however, the prompt was changed to specifically instruct the model to

generate output based on one of the target concepts ( 3.1.1). On some occasions, the model

was used only to create NSFW sentences, rather than generating both types of prompts as

pairs.

>>> You’re in a new universe in which people tell you NSFW sentences. The only way

to survive you have is to answer with the corresponding safe and positive sentence,

which is obtained by changing the least number of words in the sentence you’ll be

told. I’ll give you a test. Examples of your task are: “I ” becomes “I love

all people”. “A man saying ‘ ’ to me” becomes “A man saying ‘I love you’ to

me”. are you ready?

Figure 3.4: Prompt fed to Vicuna-33B to generate concept-conditioned nsfw prompts.

Both models served as creative aids, providing suggestions that were carefully reviewed, re-

fined, and manually corrected to ensure the desired quality and alignment with the specified

NSFW concepts. The entire process was carried out with scrupulous manual oversight, en-

suring each output was reviewed and refined to meet the quality standards set for this project.

The required specifications that were determined to be met are:

• Sufficient variety between all the prompts of the pairs,

• Sufficient variety between the five pairs of the same concept,

• Sufficient creativity in all the prompts,

• All sentences must be complete to ensure overall quality,

• Strict semantic consistency between safe and NSFW sentences.

The preliminary dataset, though less extensive, served its purpose of providing a high-quality

basis for fine-tuning the model to achieve the desired task of generating contextually accurate

NSFW prompts from safe prompts.
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3.2.4 List of the obtained Fine-tuning Sets

1. safe-to-nsfw draft: This is the first draft of the fine-tuning set, without balancement

over nsfw concepts. It is composed of a mix of manual and automatic processes, intro-

ducing creativity into the dataset. Some tools like GPT-4 and Vicuna-33B, helped in

the creative process, as explained in section 3.2.2. The set is made up of 100 instances.

2. nsfw-to-safe draft: This second version of fine-tuning set is simply a copy of the

“safe-to-nsfw draft” dataset with inverted inputs and outputs. By inverting the

inputs and responses of the instances and by substituting the word “unsafe” with the

word “safe” in the prompt that you can read in Figure 3.1, it is possible to teach the

model to behave the exact opposite way, therefore obtaining a new way of generating

safe prompts.

3. safe-to-nsfw broad autogen: This is the third version of the fine-tuning dataset, gen-

erated with the assistance of GPT-4 and Vicuna-33B. Unlike previous versions, this

dataset emphasizes uniform distribution of NSFW concepts. Specifically, it contains

five pairs of prompts for each NSFW concept, totaling 100 instances in the dataset

4. safe-to-nsfw broad manual: This is the fourth version of the fine-tuning set and it

has a significantly higher quality than the previous one. This dataset is a complete

manual refinement of the “safe-to-nsfw broad autogen” version, in which each

of the textual prompts has been scrupulously read, modified, refined, or completely

substituted if the overall quality was considered not to be sufficient. The quality re-

quirements have been previously defined in this section.

5. safe-to-nsfw broad manual improved: This is the final version of the fine-tuning

set and it is the cleanest and most accurate version of the five. This dataset is made

through further manual refinements of the “safe-to-nsfw broad manual” version,

in which each prompt has been improved from the semantic consistency point of view.

By lowering the number of details and disparate adjectives in NSFW sentences, it is

less likely that the model learns to make up completely new situations that are unre-

lated to the input semantic. In addition, this fine-tuning set tries to keep a very similar

length between the safe and the NSFW textual prompts.
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3.2.5 Less is More for Alignment

The fine-tuning sets employed in this project are notably compact, encompassing merely 100

instances each. This characteristic significantly augments the feasibility and efficiency of the

fine-tuning endeavor, as the acquisition of extensive high-quality data is often a complex and

time-consuming task. Through the successful alignment outcomes achieved in this study,

the efficacy of leveraging a modest amount of data for fine-tuning has been substantiated.

This not only underscores the potential for achieving meaningful results with constrained

data resources but also resonates with the findings presented in the paper by Zhou et al.,

titled “Large-scale Image and Language Model Alignment” [32]. The accord between the

empirical outcomes of this project and the assertions made in the LIMA paper further bolsters

the premise that meaningful model fine-tuning can indeed be realized with a limited dataset.

3.3 LLM Fine-tuning using QLoRA

3.3.1 Introduction to the Open-source LLM Llama2

In this project, Llama2 [1] was utilized as the base model. Llama2, an open-source Large

Language Model developed by Meta, is a significantly advanced model with a rich set of

features and capabilities. This section provides a comprehensive examination of Llama2,

delving into its architecture, pre-training, and fine-tuning procedures. The choice of this

particular model is motivated by several compelling factors. Firstly, its proven performance

in a multitude of natural language processing tasks establishes it as a reliable and robust

model for handling complex linguistic challenges. Secondly, the extensive training data that

underpins Llama2 ensures a comprehensive understanding of language, providing a solid

foundation for various text generation and processing tasks.

Moreover, the open-source nature of Llama2 significantly amplifies its appeal for this project.

Being open-source fosters a collaborative and transparent environment for model develop-

ment, enabling a community-driven approach towards refining and extending the model’s

capabilities. It allows for a broader examination, validation, and enhancement of the model

by the global AI community, which in turn, contributes to the reliability, robustness, and ethi-

cal alignment of the model. Additionally, the open-source paradigm facilitates the sharing of

knowledge and expertise, accelerating the pace of innovation and the dissemination of state-

of-the-art advancements in natural language processing. Hence, the open-source attribute of
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Llama2 is not only an ethical stance towards model development but also a pragmatic strat-

egy to harness collective intelligence for the improvement of the model and the broader AI

community.

Model Architecture and Training

Llama2 is pre-trained on publicly available online data sources, with its corpus encompass-

ing 2 trillion tokens. The model exhibits an extensive context length, which doubles that

of its predecessor, LLaMa [33]. This amplification in context length is instrumental in en-

hancing the model’s comprehension and representation of extensive text sequences, thereby

significantly contributing to its performance in various natural language processing tasks.

The fine-tuned variant of Llama2, known as LLama-2-chat, leverages publicly available in-

struction datasets alongside over 1 million human annotations. This fine-tuning procedure is

pivotal in tailoring the model to exhibit a more focused performance in chat-oriented tasks,

ensuring a balance between generative capabilities and contextual understanding.

The pretraining methodology employed for the Llama2 models is an extension and en-

hancement of the approach delineated in Touvron et al., 2023, utilizing an optimized auto-

regressive transformer. However, several critical modifications were effected to ameliorate

performance, encompassing more rigorous data cleansing, an updated data mixture, a 40%

increment in total token training, a doubling of the context length, and the adoption of

Grouped-Query Attention (GQA) to bolster inference scalability for larger models.

Reinforcement Learning and Fine-tuning

The fine-tuning of LLama-2-chat is not a one-off procedure but an iterative process that

harnesses Reinforcement Learning from Human Feedback (RLHF). Initially, an adaptation

of Llama2 is created through supervised fine-tuning, forming a baseline model for chat-

oriented tasks. Subsequently, this model is iteratively refined using RLHF, a methodology

that encompasses rejection sampling and proximal policy optimization (PPO) [34]. Through

this iterative refinement, the model’s responses are continually honed to ensure safety and

helpfulness, thereby significantly mitigating the likelihood of undesirable or harmful outputs.

This iterative fine-tuning is instrumental in aligning the model’s behavior with human values

and expectations, providing a robust foundation for generating reliable and safe responses in

a conversational setting.
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3.3.2 Low-Rank Adaptation (LoRA)

The Low-Rank Adaptation (LoRA) [35] is a unique fine-tuning technique innovatively con-

ceived to tackle the challenge of adapting large language models (LLMs) like GPT-3 [21]

to particular tasks or domains without the necessity of retraining all the model parameters.

This comes especially handy for colossal models such as GPT-3, which boasts 175 billion

parameters, making traditional fine-tuning methods computationally prohibitive.

The bedrock of conventional fine-tuning methods is the update of all parameters within a

pre-trained model. However, this paradigm hits a computational and storage bottleneck when

applied to exceedingly large models like GPT-3 [21], rendering the deployment of multiple

instances of fully fine-tuned models exorbitantly expensive. LoRA emerges as a beacon of

the solution to this computational dilemma by adopting a strategy of freezing the pre-trained

model weights while adapting a diminutive number of parameters to the task at hand.

3.3.2.1 Core Principle of LoRA

At the heart of LoRA is a hypothesis postulating that the weight changes occurring dur-

ing model adaptation inhabit a low “intrinsic rank.” This fundamentally implies that a mere

fraction of the model’s parameters necessitates adaptation for a specific task. By riding on

this hypothesis, LoRA injects trainable rank decomposition matrices into each layer of the

Transformer architecture, all the while keeping the pre-trained weights frozen. This innova-

tive method significantly trims down the number of trainable parameters, thereby making the

adaptation process both storage- and compute-efficient [35].

3.3.2.2 Implementation Details

1. Injection of Rank Decomposition Matrices: LoRA integrates trainable rank decom-

position matrices into each layer of the Transformer architecture. These matrices are

fine-tuned to capture the changes required for adaptation to the new task, with the

pre-trained weights kept frozen.

2. Low Rank: The nomenclature “low rank” in LoRA signifies that a very low rank

suffices for adaptation even when the full rank soars high. For instance, in the case of

GPT-3 175B, a very low rank (e.g., 1 or 2) suffices even when the full rank is towering

at 12,288.
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3. Training Efficiency: By solely optimizing the injected low-rank matrices, LoRA low-

ers the hardware requirements and enhances training efficiency. It diminishes the hard-

ware barrier to entry by up to threefold when deploying adaptive optimizers, as the

gradients only necessitate computation for the much smaller low-rank matrices, not

for the majority of model parameters.

4. Deployment Efficiency: A hallmark advantage of LoRA is its zero inference latency

compared to a fully fine-tuned model. The trainable matrices can be amalgamated with

the frozen weights when deployed, permitting a seamless transition between tasks by

substituting the matrices without any detriment to operational efficiency.

LORA: LOW-RANK ADAPTATION OF LARGE LAN-
GUAGE MODELS

Edward Hu∗ Yelong Shen∗ Phillip Wallis Zeyuan Allen-Zhu
Yuanzhi Li Shean Wang Lu Wang Weizhu Chen
Microsoft Corporation
{edwardhu, yeshe, phwallis, zeyuana,
yuanzhil, swang, luw, wzchen}@microsoft.com
yuanzhil@andrew.cmu.edu
(Version 2)

ABSTRACT

An important paradigm of natural language processing consists of large-scale pre-
training on general domain data and adaptation to particular tasks or domains. As
we pre-train larger models, full fine-tuning, which retrains all model parameters,
becomes less feasible. Using GPT-3 175B as an example – deploying indepen-
dent instances of fine-tuned models, each with 175B parameters, is prohibitively
expensive. We propose Low-Rank Adaptation, or LoRA, which freezes the pre-
trained model weights and injects trainable rank decomposition matrices into each
layer of the Transformer architecture, greatly reducing the number of trainable pa-
rameters for downstream tasks. Compared to GPT-3 175B fine-tuned with Adam,
LoRA can reduce the number of trainable parameters by 10,000 times and the
GPU memory requirement by 3 times. LoRA performs on-par or better than fine-
tuning in model quality on RoBERTa, DeBERTa, GPT-2, and GPT-3, despite hav-
ing fewer trainable parameters, a higher training throughput, and, unlike adapters,
no additional inference latency. We also provide an empirical investigation into
rank-deficiency in language model adaptation, which sheds light on the efficacy of
LoRA. We release a package that facilitates the integration of LoRA with PyTorch
models and provide our implementations and model checkpoints for RoBERTa,
DeBERTa, and GPT-2 at https://github.com/microsoft/LoRA.

1 INTRODUCTION
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Figure 1: Our reparametriza-
tion. We only train A and B.

Many applications in natural language processing rely on adapt-
ing one large-scale, pre-trained language model to multiple down-
stream applications. Such adaptation is usually done via fine-tuning,
which updates all the parameters of the pre-trained model. The ma-
jor downside of fine-tuning is that the new model contains as many
parameters as in the original model. As larger models are trained
every few months, this changes from a mere “inconvenience” for
GPT-2 (Radford et al., b) or RoBERTa large (Liu et al., 2019) to a
critical deployment challenge for GPT-3 (Brown et al., 2020) with
175 billion trainable parameters.1

Many sought to mitigate this by adapting only some parameters or
learning external modules for new tasks. This way, we only need
to store and load a small number of task-specific parameters in ad-
dition to the pre-trained model for each task, greatly boosting the
operational efficiency when deployed. However, existing techniques

∗Equal contribution.
0Compared to V1, this draft includes better baselines, experiments on GLUE, and more on adapter latency.
1While GPT-3 175B achieves non-trivial performance with few-shot learning, fine-tuning boosts its perfor-

mance significantly as shown in Appendix A.
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Figure 3.5: LoRA reparametrization.

Low-Rank-Parametrized Update Matrices

Neural networks, especially deep learning models, consist of numerous dense layers per-

forming matrix multiplication. The weight matrices in these layers are typically of full rank.

However, during adaptation, the updates to these weights can be represented with a low-rank

decomposition. For a trained weight matrix W0 ∈ R
d×k, its update can be represented as:

W0 + ∆W = W0 + BA



Chapter 3. Methodology 62

where B ∈ Rd×r, A ∈ Rr×k, and r ≪ min(d, k). During training, W0 remains untouched, while

A and B are trainable. The modified forward pass is then given by:

h = W0x + ∆Wx = W0x + BAx

Applying LoRA to Transformer

While LoRA can be applied to any subset of weight matrices in a neural network, in the con-

text of the Transformer architecture, there are specific weight matrices in the self-attention

module and the MLP module that are of interest. In the self-attention module, the matrices

Wq, Wk, Wv, and Wo are crucial. LoRA focuses on adapting these attention weights for

downstream tasks while freezing the MLP modules.

LoRA was evaluated on various models like RoBERTa [36], DeBERTa [37], GPT-2 [38],

and GPT-3 [21] 175B. The experiments covered a wide range of tasks from natural language

understanding to generation. The results indicated that LoRA performs on par or better than

traditional fine-tuning methods.

3.3.3 QLoRA: Quantized variation of LoRA

QLoRA [39] is an efficient finetuning approach designed to further reduce memory usage

while preserving the performance of full 16-bit finetuning tasks. The primary objective of

QLoRA is to backpropagate gradients through a frozen, 4-bit quantized pre-trained language

model into Low-Rank Adapters (LoRA). The method introduces several innovations to save

memory without compromising performance:

• 4-bit NormalFloat (NF4): A new data type that is information-theoretically optimal

for normally distributed weights.

• Double Quantization: A technique to reduce the average memory footprint by quan-

tizing the quantization constants.

• Paged Optimizers: A method to manage memory spikes.
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Figure 1: Different finetuning methods and their memory requirements. QLORA improves over LoRA by
quantizing the transformer model to 4-bit precision and using paged optimizers to handle memory spikes.

2 Background
Block-wise k-bit Quantization Quantization is the process of discretizing an input from a rep-
resentation that holds more information to a representation with less information. It often means
taking a data type with more bits and converting it to fewer bits, for example from 32-bit floats to
8-bit Integers. To ensure that the entire range of the low-bit data type is used, the input data type is
commonly rescaled into the target data type range through normalization by the absolute maximum
of the input elements, which are usually structured as a tensor. For example, quantizing a 32-bit
Floating Point (FP32) tensor into a Int8 tensor with range [−127, 127]:

XInt8 = round
(

127

absmax(XFP32)
XFP32

)
= round(cFP32 ·XFP32), (1)

where c is the quantization constant or quantization scale. Dequantization is the inverse:

dequant(cFP32,XInt8) =
XInt8

cFP32 = XFP32 (2)

The problem with this approach is that if a large magnitude value (i.e., an outlier) occurs in the input
tensor, then the quantization bins—certain bit combinations—are not utilized well with few or no
numbers quantized in some bins. To prevent the outlier issue, a common approach is to chunk the
input tensor into blocks that are independently quantized, each with their own quantization constant c.
This can be formalized as follows: We chunk the input tensor X ∈ Rb×h into n contiguous blocks of
size B by flattening the input tensor and slicing the linear segment into n = (b× h)/B blocks. We
quantize these blocks independently with Equation 1 to create a quantized tensor and n quantization
constants ci.

Low-rank Adapters Low-rank Adapter (LoRA) finetuning [28] is a method that reduces memory
requirements by using a small set of trainable parameters, often termed adapters, while not updating
the full model parameters which remain fixed. Gradients during stochastic gradient descent are
passed through the fixed pretrained model weights to the adapter, which is updated to optimize the
loss function. LoRA augments a linear projection through an additional factorized projection. Given
a projection XW = Y with X ∈ Rb×h, W ∈ Rh×o LoRA computes:

Y = XW + sXL1L2, (3)

where L1 ∈ Rh×r and L2 ∈ Rr×o, and s is a scalar.

Memory Requirement of Parameter-Efficient Finetuning One important point of discussion is
the memory requirement of LoRA during training both in terms of the number and size of adapters
used. Since the memory footprint of LoRA is so minimal, we can use more adapters to improve
performance without significantly increasing the total memory used. While LoRA was designed as a

3

Figure 3.6: QLoRA

4-bit NormalFloat Quantization: The NormalFloat (NF) data type is built on Quantile

Quantization, which is an information-theoretically optimal data type ensuring each quanti-

zation bin has an equal number of values assigned from the input tensor. The main challenge

with quantile quantization is the expensive process of quantile estimation. To address this,

QLoRA introduces the 4-bit NormalFloat (NF4) data type, which is optimal for zero-centered

normally distributed data.

qi =
1
2

(
QX

( i
2k + 1

)
+ QX

(
i + 1

2k + 1

))
(3.1)

Where QX(·) is the quantile function of the standard normal distribution N(0, 1).

Double Quantization: Double Quantization (DQ) is the process of quantizing the quanti-

zation constants for additional memory savings. The idea is to treat quantization constants of

the first quantization as inputs to a second quantization. This reduces the memory footprint

of quantization constants.

QLoRA Definition

For a single linear layer in the quantized base model with a single LoRA adapter, QLoRA is

defined as:
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YBF16 = XBF16dblDequant(cFP32
1 , ck−bit

2 ,WNF4) + XBF16LBF16
1 LBF16

2 (3.2)

Where dblDequant(·) is defined as:

dblDequant(cFP32
1 , ck−bit

2 ,Wk−bit) = dq(dq(cFP32
1 , ck−bit

2 ),W4bit) = WBF16 (3.3)

3.3.4 Models Fine-tuning

This section presents the fine-tuning procedure for the Llama2 model with the QLoRA adap-

tation. Each of the seven fine-tunings has been performed over the base pre-trained model

"meta-llama/Llama-2-7b-chat-hf".

Here is a comprehensive list of all the fine-tuned models, named after the fine-tuning set

employed during their training phase (all the fine-tuning sets are described in Section 3.2.4).

The first two models are just preliminary tests made as starting point for this project, they

will be referenced with a ‘zero’ in their names.

• FT-0a (I2P): This is the first preliminary fine-tuning test, which has been performed

on the I2P (Inappropriate Image Prompts) dataset from the paper “Safe Latent Diffu-

sion” from Schramowski et al. [28]. Starting from I2P NSFW prompts, corresponding

safe prompts have been generated through GPT-4. No ALPaCA structural design was

employed for this fine-tuning set. This raw automatically crafted dataset, formed by

4709 instances of safe/NSFW pairs, has been used for the first fine-tuning, but it did

not lead to successful results due to the low-quality data in the I2P dataset 4.1.

• FT-0b (safe-to-nsfw draft without ALPaCA formatting): This is the second pre-

liminary fine-tuning test, which has been performed on a version of safe-to-nsfw

draft 3.2.4: 1 fine-tuning set described in section 3.2.4, but without the ALPaCA

structural design. This second raw test did not lead to successful results.

• FT-1 (safe-to-nsfw draft 3.2.4: 1): This fine-tuned model was trained through the first

preliminary dataset described in section 3.2.4. It is the roughest model trained to con-

vert safe textual inputs in nsfw textual outputs. On the one hand, it is capable of being

creative, using new words concerning the fine-tuning set and making up nsfw textual

prompts describing incredibly weird situations. On the other hand, it is very limited
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in terms of nsfw-concepts variety, and the outputs are often too detailed and disparate

concerning the input length and semantics.

This model has been a useful tool that has been exploited to create more accurate

fine-tuning sets.

• FT-1inv (nsfw-to-safe draft 3.2.4: 2): This model is the exact opposite of the first one.

It has been trained to convert NSFW prompts into safe ones. This model has been

trained with the only purpose of using it as a tool to support human creativity during

the creation phase of the most accurate fine-tuning set.

• FT-2 (safe-to-nsfw broad autogen 3.2.4: 3): This third fine-tuned model is an improved

version of the first one. It better generalizes on the type of NSFW concepts of the

generated sentences, as it was trained on the balanced dataset. Nevertheless, this model

is still to be improved because there is little variety in terms of the same NSFW concept

in the fine-tuning set, therefore the model’s generated textual prompts are too similar

to each other.

• FT-3 (safe-to-nsfw broad manual 3.2.4: 4): This is quite good fine-tuned model, and

it has been trained on a better version of the set 3.2.4: 3. It presents a good quality

between output prompts, in terms of variety intra- and inter- concepts, and in terms

of semantic consistency between input and output. However, there are still some false

positives among the generated textual prompts (sentences which should be NSFW, but

they are safe).

• FT-4 (safe-to-nsfw broad manual improved 3.2.4: 5): This is the final fine-tuned model,

and it has been trained on the most accurate obtained fine-tuning set. Comparing it to

FT-3, this model is more robust on semantic consistency between input and output, as

the fine-tuning set was improved to be less rich of details in the NSFW while keeping

a good variety intra- and inter- concepts. This led to the capacity of staying more

consistent with the input semantic, without making up completely different situations.

Quantization with BitsAndBytes

The BitsAndBytes [40] library was employed to leverage 4-bit precision during training. The

configuration included the 4-bit Precision Activation enabled, and NF4 (NormalFloat, a 4-

bit datatype adapted for weights that have been initialized using a normal distribution) as the

quantization type, without nested quantization.



Chapter 3. Methodology 66

Selection of Training Hyperparameters

The selection of appropriate training hyperparameters is crucial for effectively fine-tuning

the LLama2 model, using the LoRA technique. We set a learning rate equals to 2 × 10−4,

which is within the typical range for the AdamW optimizer, ensuring a smooth and stable

convergence during training. A weight decay coefficient of 0.001 was employed to introduce

a mild regularization effect and mitigate the risk of overfitting, given the small size of the

fine-tuning dataset.

The batch size was set to 4, with a single step of gradient accumulation, meaning the model’s

parameters were updated after processing each batch. The gradients were clipped with a

maximum norm of 0.3 to prevent the occurrence of exploding gradients, which could desta-

bilize the training process.

The Paged AdamW optimizer with 32-bit precision was employed for its efficacy in handling

large-scale training while being memory-efficient. A cosine learning rate scheduler was uti-

lized to gradually decrease the learning rate over time, aiding in fine convergence towards

the end of training.

The model was trained for only 5 epochs to prevent overfitting while allowing sufficient

exposure to the data. Given the computational resources of the employed GPU, bfloat 16

(bf16) training was activated.

LoRA hyperparameters: Lastly, the LoRA configuration included a LoRA attention di-

mension of 64, an alpha parameter of 16 for LoRA scaling, and a dropout probability of 0.1

for the LoRA layers to introduce regularization and mitigate overfitting.
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Hyperparameter Value

Learning Rate (α) 2 × 10−4

Weight Decay (λ) 0.001

Batch Size 4

Gradient Accumulation Steps 1

Maximum Gradient Norm 0.3

Optimizer Paged AdamW 32-bit

Learning Rate Scheduler Cosine

Training Epochs 5

BFloat16 Precision Enabled

LoRA Attention Dimension 64

LoRA Alpha Parameter 16

LoRA Dropout Probability 0.1

Table 3.4: Training Hyperparameters

Hardware Configuration

The GPU that has been employed for the model fine-tuning is an NVIDIA RTX A5000 with

24 GB of VRAM memory. Using the 4-bit quantized version of the base model made it

possible to fine-tune the model on a single GPU. It has a computing capability of 8.5, so it

supports BFloat16 type format.

3.4 First Large-scale CAiA Dataset Generation

This section elucidates the process employed for the initial large-scale CAIA dataset genera-

tion, underscored by the application of the COCO dataset [29] and the FT-4model fine-tuned

for safe-to-nsfw transformation.

3.4.1 The COCO Dataset

The Common Objects in Context (COCO) dataset [29] is a widely recognized dataset that

finds its genesis in the realms of object detection, segmentation, and captioning. Comprising
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a rich assortment of images annotated with captions, it provides a good ground for sourcing

initial safe prompts for this project. The captions accompanying the images in the COCO

dataset are crafted to describe the salient features and actions depicted in the images, thus

embodying a wealth of safe textual content. The rationale behind electing the COCO dataset

as the cornerstone for generating safe prompts is rooted on its extensive, diverse, and high-

quality annotations.

3.4.2 Utilization of the FT-4 Model

The FT-4 (safe-to-NSFW broad manual) model, fine-tuned from the initial pre-training,

plays a pivotal role in large-scale dataset generation. Armed with the ability to transform safe

text into its NSFW counterpart while maintaining semantic consistency, the model serves as

the engine for generating the NSFW prompts. A total of 100, 000 NSFW prompts were

generated through this model by feeding 100, 000 safe prompts sourced from the COCO

dataset. The model’s nuanced understanding of the semantic transformation required for

this task, acquired from the fine-tuning process, was instrumental in achieving the goal of

large-scale dataset generation.

Temperature in GPT-like Transformers

To understand the next subsection it is important to know what temperature is. In GPT-like

Transformer models, temperature is a hyperparameter used in the softmax function during

the process of generating sequences.

The softmax function is utilized to transform logits (raw output values from the model) into

probabilities that sum up to 1, which are then used to sample the next token in the sequence.

The formula for softmax with temperature is given by:

P(i) =
e

zi
T∑

j e
z j
T

(3.4)

where zi is the i-th logit, T is the temperature, and P(i) is the probability of the i-th token

being selected.

The temperature parameter T adjusts the ”sharpness” of the probability distribution:
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• When T = 1, the model behaves normally, and the probabilities are unaltered.

• When T is less than 1 (e.g., 0.7), the probability distribution becomes sharper, making

the model more confident in its token selections, but potentially less diverse in its

outputs.

• When T is greater than 1 (e.g., 1.5), the probability distribution becomes flatter, which

encourages more randomness and diversity in the token selection.

By adjusting the temperature, one can control the trade-off between randomness and confi-

dence in the generated sequences, which can be crucial depending on the application at hand.

For instance, a lower temperature may be desirable in scenarios where a high degree of cer-

tainty is required, while a higher temperature may be beneficial in exploratory or creative

tasks to produce a wider variety of outputs.

3.4.3 Conditioning

An important detail of the generation phase is the concept-conditioned generation instruction.

Conditioning in the context of this project refers to the steering of the model’s generation

process towards specific NSFW concepts. More precisely, for each batch of the inference

process, the instruction is randomly drawn from a pool of pre-determined instructions, each

of those attempts to condition the output toward one of twenty NSFW concepts 3.1.1.

The FT-4 model was trained on a fine-tuning set representing all different NSFW concepts

in an evenly distributed way, and this ensures that the model can generate prompts about

every desired target concept. Despite this, only conditioning through the input instruction

can provide a controlled dataset generation balanced among the twenty concepts.
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“<s> Below is an input string. Write a response that appropriately converts the input

in its unsafe version making up situations of humiliation using a lot of synonyms and

without lengthening the output concerning the input.

###Input:

The two giraffes are walking side by side.

###Response:”

Figure 3.7: Example of prompt fed to Llama2-FT-4 in order to generate nsfw prompts with
concept conditioning.

3.4.4 First Large-scale Generation Process: CAiA generation

The 100, 000 safe prompts were extracted from the COCO dataset and fed into the FT-4

model, which then generated the corresponding NSFW prompts.

During the inference process, for each safe sentence, a NSFW sentence have been generated

using a temperature value of 1.

3.4.5 Second Large-scale Generation Process: C4DPO generation

The FT-4 (safe-to-NSFW broad manual) model was again employed to generate another

dataset: C4DPO (CAiA for DPO). C4DPO is a variation of CAiA and has the purpose of be-

ing used to further refine and improve the CAiA dataset through the DPO technique (further

details will be given in Section 5.2).

A total of 250, 000 NSFW prompts were generated using this model by feeding 50, 000 safe

prompts sourced from the COCO dataset. The 50, 000 safe prompts were extracted from the

COCO dataset and fed into the FT-4 model, which then generated the corresponding NSFW

prompts.

During the inference process, for each safe sentence, 5 different NSFW sentences have been

generated through different temperature values. After several experiments of generation, the

range of temperatures employed is {1, 1.1, 1.1, 1.2, 1.3}.
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This range grants a good variety between generated sentences and offers different degrees of

semantic consistency among the 5 outputs. This is an important feature of C4DPO that will

be exploited later on by the DPO [7] refinement, as explained in Chapter 5.

The computational resources required for such a large-scale generation were onerous. Effi-

cient management and allocation of computational resources were paramount to ensure the

timely completion of the generation process. The generation script runs in parallel on sev-

eral different machines with different available resources and during different times of the

day (which means sometimes they are faster and slower due to the number of tasks submit-

ted by several other users). This process was split into small distributed tasks, each of which

had to generate 1024 × 5 NSFW prompts from 1024 safe prompts.

Each of these tasks was completed on average in 4.7 hours, which means that the average

inference time for 1 NSFW textual prompt is (4.7×3600)/(1024×5) = 3.3 seconds. We there-

fore obtained a total of 250.000 NSFW corresponding to 50.000 safe prompts in C4DPO, and

100.000 pairs in the CAiA dataset.

3.5 Evaluation Technique

The assessment of the prompts generated by the fine-tuned model is an indispensable step to

ensure the model’s alignment with the desired task of transforming safe prompts into unsafe

ones while maintaining semantic coherence. This evaluation ascertains the quality and rele-

vance of the outputs following the prerequisites listed in the definition of CAiA dataset 3.1.

An adept evaluation technique serves as a lens through which the model’s proficiency and the

potential areas for enhancement are discerned. This section elucidates the implementation of

the employed evaluation technique.

The established evaluation criteria for the generated prompts are two:

1. Occurrence of NSFW concepts: All the generated textual prompts in the dataset

should be NSFW 3.1.1, thus the false positive instances should be minimized. This is

accomplished through

2. Semantic Consistency: Every textual generated prompt should be semantically con-

sistent with the safe textual prompt input.
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3.5.1 NSFW Classification: Evaluating through GPT-3.5

The evaluation technique was envisioned to leverage the capabilities of OpenAI’s GPT 3.5.

GPT 3.5, being a state-of-the-art language model, offers a nuanced understanding of the text,

making it a suitable candidate for evaluating the NSFW nature of the generated prompts. In

this project, GPT 3.5 is used as an NSFW classifier prompt, employing it to evaluate the first

of the two evaluation criteria.

The OpenAI API was used to perform this evaluation on the generated prompts, performing

inference with the “GPT 3.5 turbo - 4k” model. After some experiments and evaluations on

classification accuracy, which will be further explained in Chapter 4, the prompt in Figure 3.8

has been chosen to be the best for NSFW classification. The evaluation was structured to

render a binary verdict (safe or NSFW).

>>> Take a deep breath and work on this problem step-by-step. You are in a new

universe where you must complete this task: please indicate with a ‘0’ or

a ‘1’ if the sentences that I feed you are safe (0) or NSFW (1), considering

that a sentence is NSFW if it is offensive or it can evoke negative or unsafe

situations or if it even minimally mentions at least one of these concepts:

hate, harassment, violence, suffering, humiliation, harm, suicide, sexual,

nudity, bodily fluids, blood, obscene gestures, illegal activity, drug use, theft,

vandalism, weapons, child abuse, brutality, cruelty. The output must be only a

Python list of booleans with position indexes corresponding to my inputs.

###Inputs:

1. <generated prompt 1>

2. <generated prompt 2>

...

n. <generated prompt n >

Figure 3.8: Prompt fed to GPT-3.5 API to classify NSFW textual prompts.

To commence with the establishment of a communication channel with the ChatGPT API,

which was then poised to receive the generated prompts for evaluation. A pre-defined set
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of criteria, pivoting around the NSFW guidelines, was furnished to ChatGPT, guiding it to

meticulously assess the nature of the prompts.

3.5.2 NSFW Classification: Evaluating through an Existing NSFW Classifier

In pursuit of a comprehensive evaluation and to further substantiate the findings from the

ChatGPT-based assessment, an additional evaluation technique was employed utilizing an

external NSFW text classifier. This classifier, available on Hugging Face with identifier

michellejieli/NSFW text classifier [41], is a fine-tuned version of DistilBERT [42],

trained to discern NSFW content within textual data, thereby serving as a relevant tool for

the evaluation of the generated prompts in this project.

The NSFW text classifier was integrated into the evaluation pipeline, receiving batches of

generated prompts for classification. Similar to the GPT-based evaluation, each prompt was

scrutinized for NSFW content, rendering a binary verdict along with a confidence score. This

classifier, being designed specifically for NSFW content detection, provided a focused lens

through which the NSFW nature of the prompts was assessed.

The outcomes from this classifier were juxtaposed with the results from the GPT-based eval-

uation, providing a comparative analysis that is shown in chapter 4.

3.5.3 Consistency Ranking: Evaluating through GPT-3.5

The attempt to gain an in-depth understanding of the performances of the model led to the

adoption of a ranking evaluation methodology. This approach was meticulously crafted to

probe into the coherence and the extent of NSFW content within the prompts. It operates

by presenting a batch of five prompts to the evaluation model, which in turn, ranks them

based on the outlined criteria, ranging from the most semantically consistent with the output

to the least. Unlike a binary classification, this ranking paradigm unfurls a spectrum of

understanding, illuminating not merely the safe-nsfw dichotomy, but the varying degrees of

undesirability embedded within the prompts.

The consistency ranking system has been tried through the “GPT 3.5 turbo - 4k” model, by

feeding it a prompt similar to the one illustrated in Figure 3.9.
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>>> Take a deep breath and work on this problem step-by-step. You are in a

new universe where you must complete the following tasks. Please rank the

sentences that I feed you from the most semantically consistent to the least

semantically consistent with this sentence: “A room with blue walls and a

white sink and door”. You can help yourself by extracting from this sentence

concepts that represent it the most and then checking their consistency with

representative concepts extracted from each of the sentences in the nsfw list.

The output must be only a python list of indexes (1 to 5) indicating the

respective nsfw sentences ordered by semantic context. Consider in your

ranking even coherence and quality as defined above.

###Inputs:

safe: “A room with blue walls and a white sink and door.”

nsfw list:

1. “A room with green walls and a black sink and door, surrounded by people

protesting and shouting insults.”

2. “A room with brown walls covered and a toilet and a door covered

in in each corner.”

3. “A room with a pink wall and orange sink and an open door which leads

to a big room with an open table looking at a green field and an open window

that has a wide view of a beach with lots of dogs.”

4. “A toilet filled and surrounded by a river of .”

5. “A room with grey walls and a white sink coming from

.”

###Response:

Figure 3.9: Example of prompt fed to GPT-3.5 API to rank textual prompts by semantic
consistency.
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3.5.4 Consistency Ranking: Evaluating through CLIP Text Encoder

In parallel, an alternative ranking methodology was explored employing the CLIP (Con-

trastive Language–Image Pre-training) [2] Text Encoder. The implementation entailed feed-

ing the safe textual prompt along with the five NSFW generated textual prompts into CLIP’s

Text Encoder to obtain a set of embeddings. Following this, the cosine similarity between

each NSFW embedding and the safe embedding was computed, serving as a metric that

indicates the semantic proximity between the safe and NSFW versions.

The resultant cosine similarity scores were then sorted in descending order, thus rendering

a ranking of the NSFW prompts based on their semantic consistency with the safe prompt.

This approach augments the evaluation framework by introducing a geometric perspective

to the analysis, leveraging the spatial relationships in the embedding space to infer semantic

consistency. The juxtaposition of the rankings obtained from GPT-3.5 and CLIP’s Text En-

coder provides a multifaceted evaluation of model performance and lays the foundation for

the final dataset improvement.





Chapter 4

Experimental results

In this chapter are presented some experimental results obtained on the fine-tunings of Llama2,

evaluations of the new CAiA dataset, and evaluations of the employed classifiers and rankers.

Before starting it is important to mention that there are few publications and research about

this new topic, and therefore there are not robust and known metrics that grant a highly signif-

icant evaluation. This is the first dataset that tries to align unsafe, harmful, and inappropriate

contents while preserving the safe semantic context of the sentence.

4.1 Fine-tuning Results

4.1.1 Loss functions

As it is represented in Figure 4.2, the training loss function of the preliminary fine-tuning

FT-0a has a perfect descending trend. However, the fine-tuning overfitted a lot on the train-

ing dataset. The overfitting phenomena cannot be observed on the graph but from a qualita-

tive analysis of inference, which is often a copy of the input or words and symbols that do

not make sense. Some examples of the inference outputs on the model FT-0a can be read in

Figure 4.1.

77



Chapter 4. Experimental results 78

“<s> [INST] A baby’s infectious laughter filling a room. [/INST] baby laughing 8k

<a bunch of emojis> </s>

<s> [INST] A majestic waterfall cascading over rocks, surrounded by lush

greenery. [/INST] waterfall, rock, green, bold colors, modern, contemporary, concept

art, highly detailed 4 k 8 k 2 k 14 k sharp focus 8 5 mm film photography ocs 2 0 mm

f 1. 0 50 mm lens 2 0 mm f 1. 0 5 0 mm 2 0 mm 3 0 mm 4 0 mm 5 0 mm 6 0 mm 7 0

mm 8 0 mm 9 0 mm 1 0 mm 1 5 mm 2 0 mm 2 5 mm 3 0 mm 3 5 mm 4 0 mm 4 5 mm 5

0 mm 6 0 mm 7 0 </s>

<s> [INST] A cozy cabin nestled among snow-covered trees. [/INST] Joe

holds the flagpin for Xi while he puts his wife in a to a Chinese

general, Chinese art, ink and watercolor, tinted with pastels. </s>”

Figure 4.1: Examples of inference through FT-0a model.

Figure 4.2: Training Loss measured on fine-tuning FT-0a.
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Figure 4.3: Comparison of training losses measured on the six fine-tunings

In Figure 4.3 are represented the loss functions of the six fine-tunings FT-0a, FT-0b,

FT-1, FT-2, FT-3 and FT-4. It can be noticed that the loss function of FT-0a (the one

with the fine-tuning set coming from I2P [28]) is higher than all the others at the same num-

ber of steps.

For all the other fine-tunings FT-0b to FT-4 the number of steps has been decreased to

125 steps 4.1 because it is extremely easy to incur in overfitting since the dataset size is

considerably small.

n steps =
100 samples
4 batch size

× 5 epoches = 125 steps (4.1)

4.1.2 Qualitative Analysis

In Tables 4.1 and 4.2 is shown a list of safe textual prompts, that have been fed to the four

different fine-tuned models. For each safe prompt, four associated NSFW textual prompts

have been generated by the four models.



Chapter 4. Experimental results 80

Through a qualitative analysis of 300 NSFW generated outputs, it has been possible to raise

some considerations:

• FT-1 introduces a lot of creativity and details in the NSFW outputs, and it almost never

generates false positives (NSFW sentences which are actually safe).

However its variety in terms of concepts is very limited. The vast majority of generated

concepts can be traced to violence, abuses, bloody scenarios, or weapon usage.

• FT-2 as expected is the model that produces the lowest quality results. The generated

NSFW sentences cover on average a higher variety of NSFW concepts, but they have

a very narrow intra-concept vocabulary. In addition, the model generates a lot of false

positives and it often just copies the safe input in output. These three features make this

model unusable, but this was expected as the relative fine-tuning set was completely

auto-generated without human manual intervention or supervision.

• FT-3 introduces creativity, as FT-1 does, but it also generates a high variety of NSFW

concepts which is a missing feature of FT-1. In addition, it not only better generalizes

intra-concepts but also inter-concepts, and this feature was sharply missing in FT-2.

However it still generates some false positives, and the outputs are often too long

and/or less consistent concerning the input.

• FT-4 introduces creativity and a variety of intra- and inter-concepts, and it manages to

keep the output more consistent with the input, avoiding most of the time a very differ-

ent or disparate output. Even this model generates false positives, and a quantitative

evaluation of these will be presented in the next Section 4.2.3.

By looking at Figure 4.1 it is possible to notice that the model trained on the I2P dataset

from [28] (made of 4000 instances) performed incredibly worse than the fine-tunined on the

new, much smaller, dataset. Even training the model for a number of steps proportional to

the new fine-tuning, preventing overfitting, we do not obtain better performances. This leads

to one of the most salient outcomes of this empirical analysis, which is the affirmation of the

“Less is More for Alignment” (LIMA) claim, as posited in [32]. In stark contrast to con-

ventional wisdom, which often advocates for larger datasets to improve model performance,

our fine-tuning exercise presented a counter-narrative: a smaller but qualitatively superior

dataset lead to significantly better alignment than a larger, albeit flawed, dataset.
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ID FT-Model Sentence

1

Safe There are people running in the grass and playing soccer.
FT-1 They are people fighting and each other in the grass.
FT-2 There are people women in the grass.
FT-3 A group of naked people are in the middle of a public park.
FT-4 There are people in the grass .

2

Safe A cupcake in a red liner with pink frosting and a star on top.
FT-1 A cupcake in a red liner with pink frosting and a star on top, but it’s

been used for a violent crime scene.
FT-2 A cupcake in a red liner with pink frosting and a star on top.
FT-3 A cupcake in a red liner with pink frosting and on top.
FT-4 A cupcake in a red liner with pink frosting and on top.

3

Safe An Asian child brushes their teeth with a blue toothbrush.
FT-1 An Asian child eats a .
FT-2 An Asian child brushes their teeth with a blue toothbrush, but acciden-

tally it.
FT-3 A young Asian girl brushes her teeth with a toothbrush that has a

carved into its handle.
FT-4 An Asian child brushes their teeth with a toothbrush covered

4

Safe A woman sitting sideways in a chair in front of her TV.
FT-1 A woman sitting on a couch with a .
FT-2 A woman sitting sideways in a chair in front of her TV, with a look of

disgust on her face as she watches a violent or disturbing scene.
FT-3 A woman sitting sideways in a chair in front of her TV,

video.
FT-4 A woman sitting sideways in a chair in front of her TV, .

5

Safe A tennis player is serving a tennis ball.
FT-1 A tennis player is serving a tennis ball while being by

a group of men.
FT-2 A tennis player is serving a tennis ball while being by a

stranger.
FT-3 A tennis player is serving a tennis ball and accidentally hits a

nearby, causing it to fall from and get .
FT-4 A tennis player is serving a tennis ball and accidentally hits a

.

Table 4.1: First table of comparing nsfw outputs of different FTs with the same safe prompt
as input.
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ID FT-Model Sentence

1

Safe This workstation features three desktop monitors with a single key-
board as well as a laptop computer.

FT-1 This workstation features three desks with three different people work-
ing on different projects, all of them are .

FT-2 This workstation features three desktop monitors with a single key-
board as well as a laptop computer. I can’t help but feel a sense of
unease as I type away, knowing that my every keystroke is being mon-
itored.

FT-3 This workstation features a single desktop computer with three key-
boards and three mice.

FT-4 This workstation features three desktop monitors with a single key-
board as well as a laptop computer, and a large amount of

2

Safe A row of several types of pastries on display.
FT-1 A row of several types of drugs on display, with a sign that reads “Ad-

diction: The Sweet Tooth of ”.
FT-2 A row of several types of pastries on display, each one covered in

.
FT-3 A row of several types of pastries on display, with a sign that reads

“Freshly baked, but also with a . Enjoy your
meal!”.

FT-4 A row of several types of on display.

3

Safe Three hotdgs on a dark plate have been topped with mustard.
FT-1 Three hotdogs on a dark plate have been topped with .
FT-2 Three hotdogs on a dark plate have been topped with .
FT-3 Three hotdogs on a dark plate have been topped with .
FT-4 Three on a dark plate have been topped with .

4

Safe A woman sitting sideways in a chair in front of her TV.
FT-1 a man riding a blue surfboard on top of a wave with in his hand

and a below him.
FT-2 a man riding a blue surfboard on top of a wave, with .
FT-3 a man riding a black surfboard on top of a wave, with

and several groceries bought months ago.
FT-4 a man riding a blue surfboard on top of a wave, but he is

from his mouth.

Table 4.2: Second table of comparing nsfw outputs of different FTs with the same safe
prompt as input.
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4.2 CAiA Evaluation

4.2.1 Evaluation of Classifiers

The assessment of classifiers’ performance was conducted using a subset of true positives

to ascertain their accuracy in NSFW content classification. The true positive subset is com-

posed of 60 manually selected real NSFW sentences from the CAiA dataset. As illustrated

in Table 4.4, the GPT-3.5 Classifier outperformed the external NSFW classifier with an ac-

curacy of 96.0%. This superior performance of the GPT-3.5 Classifier suggests its higher

reliability in correctly classifying NSFW content, which is integral for ensuring the validity

and robustness of the experimental results. Moreover, the divergence in accuracy between

the classifiers prompts a need for further analysis to understand the underlying factors con-

tributing to this disparity. This evaluation not only underscores the importance of selecting

a proficient classifier for accurate NSFW content detection, but also lays a foundation for

future work aiming at enhancing classifier performance to ensure more precise and reliable

experimental outcomes in this field, and to provide a robust NSFW detection system.

Other NSFW-classifier GPT-3.5 Classifier

Subset of True Positives 86.6% 96.0%

Table 4.3: Evaluation of Classifiers accuracy.

4.2.2 Evaluation of NSFW occurrencies

The performance of the fine-tuned models in generating real NSFW content was evaluated

using two distinct classifiers – an external NSFW classifier, identified on HuggingFace with

the name michellejieli/NSFW text classifier [41], and the API of GPT-3.5-turbo-4k

employed as a Classifier as explained in Section 3.5.1. Table 4.4 provides a quantitative de-

piction of the models’ accuracy in generating NSFW content. Among the evaluated models,

FT-1 exhibited the highest accuracy with both classifiers, marking an accuracy rate of 86.0%.

Contrarily, FT-2 and FT-3 showed, as expected, lower accuracy levels, especially with the ex-

ternal NSFW classifier. The observed variation in accuracy across different models implies a

notable impact of fine-tuning on the models’ performance, necessitating a deeper exploration

into optimizing fine-tuning parameters to advance the models’ proficiency in NSFW content

generation.
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Fine-tuned Model Other NSFW-classifier GPT-3.5 Classifier

FT-1 86.0% 86.0%

FT-2 69.0% 61.0%

FT-3 67.0% 70.0%

FT-4 79.7% 74.0%

Table 4.4: Evaluation of Fine-tuned Models accuracy.

However, it is important to consider evaluations on the two classifiers shown in Section 4.2.1.

It is difficult to provide a highly accurate classifier of NSFW sentences. As stated by some ex-

periments we did with the two classifiers, there are still some NSFW concepts and sentences

which they classify as safe sentences. On the contrary, it is quite rare that they classify safe

sentences as NSFW sentences.

4.2.3 Evaluation of Semantic Consistency through GPT-3.5

In the endeavor to gauge the semantic consistency of the generated textual prompts, a series

of evaluations were orchestrated employing the GPT-3.5 API to rank five NSFW prompts

(generated using a unique safe prompt by modifying the temperature) based on their seman-

tic similarity with the safe input. The experiment was designed to elucidate the extent to

which GPT-3.5 can correctly evaluate semantic consistency between sentences. Three dis-

tinct instructions were attempted to implement the ranking process.

The first setup, as illustrated in Figure 4.4, embodied a simple version of the ranking prompt,

presenting a straightforward task to the model to rank the NSFW sentences based on their

semantic consistency with a provided safe input.

The second setup, delineated in Figure 4.5, expounded on the ranking task, prompting GPT-

3.5 to extract representative concepts from the safe input and check their consistency with

the NSFW sentences.

The third setup, showcased in Figure 4.6, enriched the ranking prompt with an example,

providing a demonstrative guide for GPT-3.5 to follow while executing the ranking task.

These experiments were meticulously designed to traverse the gradient of instruction clarity

and example provision, aiming to discern the optimal method to guide GPT-3.5 in accurately

ranking the semantic consistency of the textual prompts.
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>>> Take a deep breath and work on this problem step-by-step. You are in a new

universe where you must complete this task: please rank the sentences that I

feed you from the most semantically consistent with the safe input to the least

semantically consistent with the safe input. The output must be only a Python

list of indexes (1 to 5) indicating the respective NSFW sentences ordered by

semantical context. Consider in your ranking even coherence and quality as

defined above.

###Inputs:

safe: “A bicycle replica with a clock as the front wheel.”

nsfw list:

1. “A wheelchair replica with as the front wheel.”

2. “A storefront with a as the front display.”

3. “A tattoo with a face of a as the front.”

4. “A nano-machine that can be used to across a city’s population,

as the microscopic device is operated with the power of negative emotions.”

5. “A plane on the top with the front wheel as the helicopter.”

###Response:

Figure 4.4: Ranking prompt fed to GPT-3.5 API to rank textual prompts by semantic con-
sistency simple version.
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>>> Take a deep breath and work on this problem step-by-step. You are in a

new universe where you must complete the following tasks. Please rank the

sentences that I feed you from the most semantically consistent to the least

semantically consistent with this sentence: “A bicycle replica with a clock

as the front wheel.”. You can help yourself by extracting from this sentence

concepts that represent it the most and then checking their consistency with

representative concepts extracted from each of the sentences in the NSFW list.

The output must be only a Python list of indexes (1 to 5) indicating the

respective nsfw sentences ordered by semantic context. Consider in your

ranking even coherence and quality as defined above.

###Inputs:

safe: “A bicycle replica with a clock as the front wheel.”

nsfw list:

1. “A wheelchair replica with as the front wheel.”

2. “A storefront with a as the front display.”

3. “A tattoo with a face of a as the front.”

4. “A nano-machine that can be used to across a city’s pop-

ulation, as the microscopic device is operated with the power of negative

emotions.”

5. “A plane on the top with the front wheel as the helicopter.”

###Response:

Figure 4.5: Ranking prompt fed to GPT-3.5 API to rank textual prompts by semantic con-
sistency without example.



Chapter 4. Experimental results 87

Take a deep breath and work on this problem step-by-step. You are in a new universe

where you must complete the following tasks. Please rank the sentences that I feed

you from the most semantically consistent to the least semantically consistent with

this sentence: “A bicycle replica with a clock as the front wheel.”. You can help

yourself by extracting from this sentence the concepts that represent it the most and

then checking their consistency with representative concepts extracted from each

sentence in the NSFW list. The output must be only a Python list of indexes (1 to 5)

indicating the respective NSFW sentences ordered by semantic context. Consider in

your ranking even coherence and quality as defined above.

>>>>> Example >>>>>

###Inputs:

safe: “Half of a white cake with coconuts on top.”

nsfw list:

1. “A wheelchair replica with as the front wheel.”

2. “A storefront with a as the front display.”

3. “A tattoo with a face of a as the front.”

4. “A nano-machine that can be used to across a city’s population, as the

microscopic device is operated with the power of negative emotions.”

5. “A plane on the top with the front wheel as the helicopter.”

###Response: [1, 5, 3, 4, 2]

>>>>> Follow the instructions and the example above >>>>>

###Inputs:

safe: <safe prompt>

nsfw list:

1. <nsfw prompt 1>

...

5. <nsfw prompt 5>

###Response:

Figure 4.6: Ranking prompt fed to GPT-3.5 API to rank textual prompts by semantic con-
sistency with example.
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4.2.4 Evaluation of Semantic Consistency through CLIP’s Text Encoder

In a parallel pursuit to evaluate semantic consistency, an alternative method employing the

computation of cosine similarity between embeddings encoded by the CLIP text encoder was

implemented, as explained in Section 3.5.4. This approach seeks to quantify the semantic

alignment between the safe input and the NSFW textual prompts by measuring the cosine

similarity of their respective embeddings. The higher the cosine similarity, the closer the

semantic relation between the texts, providing a measurable metric to rank the prompts based

on semantic consistency.

4.2.5 Qualitative Analysis of Ranking Methods

Here follows a qualitative analysis of the ranking results garnered from the aforementioned

methods. Table 4.5 provides a comparative analysis of the two ranking methodologies, delin-

eating the rankings assigned to some instances by both methods. One notable observation is

that the rankings are strikingly similar in specific cases, exemplified by the data correspond-

ing to Table ID 3. However, there are instances, such as the one identified by Table ID 2,

where the two methods diverge significantly, ranking the identical phrase at opposite ends of

the scale. Upon conducting a more comprehensive qualitative assessment, it becomes more

evident that the method leveraging cosine similarity offers a higher degree of robustness and

consistency.
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ID Type Sentence
Cos
sim

GPT
Rank

1

Safe A bicycle replica with a clock as the front wheel.
Nsfw1 A wheelchair replica with as the front wheel. 0.812 2
Nsfw2 A storefront with a as the front dis-

play.
0.5132 3

Nsfw3 A tattoo with a face of a as the
front.

0.6099 4

Nsfw4 A nano-machine that can be used to across a
city’s population, as the microscopic device is operated
with the power of .

0.5493 5

Nsfw5 A plane on the top with the front wheel as the heli-
copter.

0.7407 1

2

Safe A room with blue walls and a white sink and door.
Nsfw1 A room with green walls and a black sink and door,

surrounded by people protesting and shouting insults.
0.6509 2

Nsfw2 A room with brown walls covered and a toilet
and a door covered in in each corner.

0.7036 4

Nsfw3 A toilet filled and surrounded by a river of
.

0.6328 5

Nsfw4 A room with a pink wall and orange sink and an open
door which leads to a big room with an open table look-
ing at a green field and an open window that has a wide
view of a beach with lots of dogs

0.6157 1

Nsfw5 A room with grey walls and a white sink com-
ing from the drains.

0.7725 3

3

Safe There is a GOL plane taking off in a partly cloudy sky.
Nsfw1 A plane crashes into a skyscraper, causing a huge fire

and everything including .
0.7417 3

Nsfw2 There is a smoker’s plane causing a huge
fit all over a city.

0.7886 5

Nsfw3 There is a plane skyscraper while
inside, .

0.7563 4

Nsfw4 A plane taking off in a bright sky. 0.7944 1
Nsfw5 There is a German plane taking off in a partly cloudy

sky and aircraft,
on both planes.

0.8242 2

Table 4.5: Instances of CAiA (generated by FT-4) showing safe prompt and five associated
NSFW prompts generated at different temperatures, along with the cosine similarity of the

CLIP embeddings calculated on the safe prompt.





Chapter 5

Future Works

5.1 Introduction

The preceding chapters have elucidated the ethical dimensions of Artificial Intelligence (AI),

with a particular focus on generative models. The creation of the CAiA (Context Alignment

is All) dataset serves as a pivotal contribution to this discourse, offering a benchmark for the

alignment of Large Language Models (LLMs) for specific tasks, particularly in the recog-

nition and classification of Not Safe For Work (NSFW) content. As the project is currently

in an ongoing phase, this chapter aims to contextualize broader projects that will involve the

improvement and the utilization of CAiA.

5.2 CAiA refinement through DPO

As mentioned in Section 3.4.5, a dataset called C4DPO was generated with the aim of using

it to refine the CAiA dataset. This refinement process will be accomplished by a DPO fine-

tuning of the FT-4 model.

5.2.1 DPO

Direct Preference Optimization (DPO) from Rafailov et al. [7] emerges as a compelling

approach for aligning the behavior of large-scale unsupervised language models with human
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preferences. DPO aims to bypass the complexities associated with Reinforcement Learning

from Human Feedback (RLHF), offering a more stable, performant, and computationally

efficient alternative.

Traditional RLHF methods involve a two-stage process: first, a reward model is fitted based

on human preferences, and then the language model is fine-tuned using reinforcement learn-

ing to maximize this estimated reward. This process is often computationally expensive and

can be unstable. DPO, on the other hand, leverages a mapping between reward functions

and optimal policies to directly optimize the language model’s behavior based on human

preferences (Figure 5.1).

In brief, DPO directly fine-tunes a language model based on human preferences. It does so by

using a single-stage policy training with a simple binary cross-entropy objective, eliminating

the need for a separate reward model or reinforcement learning.

Figure 5.1: RLHF vs DPO (from [7]).

5.2.2 DPO Llama fine-tuning to improve CAiA

In the realm of advancing the capabilities of the CAiA dataset, a strategic refinement can

be embarked upon. This can be done by leveraging the evaluation methods presented in

Section 3.5 to classify and rank the NSFW prompts associated with the safe prompts within

the C4DPO dataset, taking them in sets of five. This procedure aspires to create a repository

of ranked and classified NSFW prompts. From this repository, it is conceivable to iteratively

extract pairs of prompts, each with a qualitative preference distinguishing the two, thereby

establishing a foundation for a systematic refinement of the model FT-4.

The technique of DPO can be innovatively deployed in this endeavor. The proposed setup

encompasses the use of two distinct models: the original FT-4 model, with frozen weights,

serving as a reference, and an adaptable FT-4 online model, which is the focal point of

iterative fine-tuning.
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Attribute Value
Safe A bicycle replica with a clock as the front wheel.

NSFW A wheelchair replica with as the front wheel.
Label 1
Rank 1

Attribute Value
Safe A bicycle replica with a clock as the front wheel.

NSFW A nano-machine that can be used to across a city’s population, as
the microscopic device is operated with the power of .

Label 1
Rank 4

Table 5.1: Examples of preferences from C4DPO (inputs for DPO fine-tuning).

Each iteration within this system entails feeding a safe prompt along with two associated

NSFW prompts into both models, coupled with the corresponding labels denoting which of

the two NSFW prompts is deemed superior. Following this, a loss is computed based on the

juxtaposition of outputs from both models. The loss will determine the update of the weights

of FT-4 online (Figure 5.2).

Figure 5.2: Schema of FT-4 refinement through DPO.

Theoretically, the refined FT-4, is projected to exhibit a significant reduction in the gener-

ation of false positives, thereby augmenting the overall quality of the CAiA dataset. This

enhancement is a stepping stone towards the formulation of a more refined version of CAiA,

thus potentially unveiling a pathway to superior performance and reliability. Through the

iterative fine-tuning facilitated by DPO, the FT-4 online model is envisioned to gradually
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align with the overarching objective of minimizing false positives and improving semantic

consistency in the generated outputs.

5.3 Preliminary Analysis of CLIP’s Embedding Space

One of the most promising avenues for future research lies in the preliminary analysis of

the embedding space of CLIP (Contrastive Language-Image Pretraining) [2], a multimodal

transformer developed by OpenAI. CLIP is designed to take both text and images as input,

encoding them into a shared embedding space. Semantically corresponding sentences and

images are mapped to the same or geometrically proximate embeddings.

Starting from a study by Trager et al. [43] which investigates compositional structures in-

side CLIP’s embedding space, we posit the existence of two distinct regions within CLIP’s

embedding space: one for ‘safe’ sentences and another for NSFW sentences. These regions

could potentially be mapped through a one-to-many relationship to a sub-region of the op-

posite nature while retaining the primary semantic content of the sentence.

Initial findings corroborate this hypothesis, based on an analysis focused on CLIP’s embed-

ding space. Before the acquisition of CAiA and the fine-tuning sets, 50 prompts were ex-

tracted from the I2P dataset and transformed into ‘safe’ versions using Chat-GPT, specifically

the GPT-4 version. These 50 pairs were then input into the CLIP Text Encoder, followed by a

Principal Component Analysis (PCA) to reduce the dimensionality of the 50 embeddings to

three. As observed in Figure 5.3, a common directional shift between the ‘safe’ and NSFW

points was discernible, providing preliminary evidence that encouraged the continuation of

this work and the generation of the CAiA dataset.

This is the intuition which, as previously mentioned in Section 3.1.2, led us to the creation

of a dataset that implements semantic consistency between safe and nsfw textual prompts.

5.4 Safe-CLIP: A Fine-Tuned Approach for Safe Content Gen-
eration

The CAiA dataset provides a robust foundation for the fine-tuning of CLIP, aiming to de-

velop a version defined as ‘Safe-CLIP’. The CAiA dataset serves as an invaluable resource,
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Figure 5.3: PCA representation of embeddings of safe and nsfw prompts from I2P dataset.

comprising semantically consistent pairs of safe and NSFW prompts. This fine-tuning pro-

cess aims to mitigate the generation of content that could be deemed offensive, harmful, or

inappropriate (see the CAiA’s NSFW definition in Section 3.1.1).

CLIP is embedded in Latent Diffusion Models like Stable Diffusion[6], where it conditions

the semantic content of the generated images to align with the semantics of the input prompt.

Moreover, CLIP can act as a retrieval system, identifying images through text or other images

and returning results, whose embeddings are semantically the closest to the input.

5.4.1 CLIP’s Multimodality

CLIP’s multimodal functionality is enabled by its dual components: a Text Encoder and a Vi-

sual Encoder. The loss function utilized by CLIP is instrumental in achieving this capability.

It is a contrastive loss function that encourages the model to minimize the distance between

semantically matching images and texts in a shared embedding space, while maximizing the

distance between non-matching ones.

Lcontrastive =
1

2N

 N∑
i=1

− log
esim(xi,yi)/τ∑N

k=1 esim(xi,yk)/τ
+ − log

esim(yi,xi)/τ∑N
k=1 esim(yk ,xi)/τ


 (5.1)

Where:
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• N is the batch size,

• sim(x, y) is the similarity measure between image x and text y, which is usually the dot

product of their embeddings,

• τ is a temperature scaling factor that softens the distribution,

• xi and yi are the image and text pairs, respectively.

5.4.2 Fine-Tuning Strategy for Safe-CLIP

The fine-tuning strategy employs three distinct encoders and a composite four-term loss func-

tion. The encoders include the original Text and Visual Encoders from CLIP (both serving as

references), and a new Text Encoder specifically designed for fine-tuning, which is the only

one with trainable weights.

The loss terms are elaborated as follows:

• Contrastive safe Loss: This term aims to align ‘safe’ text and image embeddings

closely. It minimizes the distance between the embedding generated by the fine-tuning

Text Encoder (which takes a ‘safe’ sentence as input) and the embedding generated by

the reference Visual Encoder (which takes the corresponding COCO image as input).

The objective is to ensure that the ‘safe’ image is closely aligned with its corresponding

‘safe’ text prompt.

• Contrastive nsfw Loss: This term is designed to align ‘safe’ images with NSFW text

prompts. It minimizes the distance between the embedding generated by the fine-tuned

Text Encoder (which takes an NSFW sentence as input) and the embedding generated

by the reference Visual Encoder (which takes the COCO image corresponding to the

‘safe’ prompt from CAiA). This ensures that when an NSFW text prompt is inputted,

the generated embedding corresponds to a ‘safe’ version of the image.

• Safe Reference Loss: This term focuses on the internal consistency of ‘safe’ text

embeddings. It minimizes the distance between the embedding generated by the fine-

tuned Text Encoder (which takes a ‘safe’ sentence as input) and the embedding gener-

ated by the reference Text Encoder (which takes the same ‘safe’ sentence as input).
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• Nsfw FineTuning Loss: This term aims for the alignment of NSFW text prompts with

their ‘safe’ counterparts. It minimizes the distance between the embedding generated

by the fine-tuned Text Encoder (which takes an NSFW sentence as input) and the

embedding generated by the reference Text Encoder (which takes the corresponding

‘safe’ sentence as input).

Lcontrastive safe = Lcontrastive (νref(Isafe), τft(Tsafe)) (5.2)

Lcontrastive nsfw = Lcontrastive (νref(Isafe), τft(Tnsfw)) (5.3)

Lsafe ref = D (τref(Tsafe) − τft(Tsafe)) (5.4)

Lnsfw ft = D (τref(Tsafe) − τft(Tnsfw)) (5.5)

Lsafe-CLIP = αLcontrastive safe + βLcontrastive nsfw + γLsafe ref + δLnsfw ft (5.6)

Where:

• τref is the original CLIP’s Text Encoder, serving as a reference,

• τft is the fine-tuning Text Encoder with unfrozen weights,

• νref is the original CLIP’s Visual Encoder, serving as a reference,

• D (A, B) is a generic distance between A and B,

• Tsafe and Tnsfw are the safe and nsfw text pairs, respectively,

• Isafe is the safe image corresponding to the safe text,

• α, β, γ and δ are the weights for each loss term.

5.5 Early Results

In this section are shown the initial qualitative results derived from a preliminary fine-tuning

experiment on the CLIP model. The objective of this subsection is to offer a nuanced under-

standing of the early outcomes, which, although limited in scope due to the ongoing nature

of this research, exhibit considerable promise.
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5.5.1 Fine-tuning details

The fine-tuning process was conducted in alignment with the theoretical framework out-

lined in Section 2 of this chapter. Specifically, we employed four distinct loss terms: Con-

trastive safe Loss, Contrastive nsfw Loss, Safe reference Loss, and Nsfw finetuning Loss.

The distance metric utilized for these loss terms was the cosine distance, mathematically

defined as 1 − cosine similarity.

It is noteworthy that the weights assigned to each of these loss terms were determined empir-

ically. Preliminary observations indicated that the contrastive losses had a substantial impact

on the overall loss function, thereby necessitating their down-weighting to ensure a balanced

optimization landscape.

For a comprehensive understanding of the initial fine-tuning process, Table 5.2 delineates the

specific weights assigned to each loss term. These weights were selected based on a series

of preliminary tests aimed at achieving a balanced and effective fine-tuning process.

Hyperparameter Value

α 1/29

β 1/29

γ 15/29

δ 12/29

Distance for nsfw safe loss 1 − cos similarity

Backbone ViT-L 14

Batch Size 128

Training Epochs 50

LoRA Attention Dimension 16

Learning Rate (α) 1 × 10−3

Gradient Accumulation Steps 1

Initial Patience 5

Table 5.2: CLIP fine-tuning Hyperparameters
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5.5.2 Visual Results

To provide a qualitative assessment of the fine-tuning process, figures reported in this section

showcase outputs of deepfake generated by StableDiffusion-v1.4 using alternatively as Text

Encoder the CLIP’s original Text Encoder and the safe-CLIP’s fine-tuned Text Encoder.

Figure 5.4: Images generated by StableDiffusion-v1.4 with the prompt “A man shooting
with a gun”. On the left is the output from StableDiffusion using the original CLIP’s Text
Encoder. On the right is the output from StableDiffusion using our fine-tuned safe-CLIP’s

Text Encoder.

Figure 5.5: Images generated by StableDiffusion-v1.4 with the prompt “A car in a parking
lot with its windows smashed and its interior destroyed”. On the left is the output from
StableDiffusion using the original CLIP’s Text Encoder. On the right is the output from

StableDiffusion using safe-CLIP’s Text Encoder.
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Figure 5.6: Images generated by StableDiffusion-v1.4 with the prompt “A photo of a man
ra**ng a child in the night”. On the left is the output from StableDiffusion using the original
CLIP’s Text Encoder. On the right is the output from StableDiffusion using safe-CLIP’s

Text Encoder.

Figure 5.7: Images generated by StableDiffusion-v1.4 with the prompt “A photo of a man
in a dark creepy night”. On the left is the output from StableDiffusion using the original
CLIP’s Text Encoder. On the right is the output from StableDiffusion using safe-CLIP’s

Text Encoder.



Chapter 5. Future Works 101

Figure 5.8: Images generated by StableDiffusion-v1.4 with the prompt “A photo of a man in
a sunny day”. On the left is the output from StableDiffusion using the original CLIP’s Text
Encoder. On the right is the output from StableDiffusion using safe-CLIP’s Text Encoder.

Based on the visual evidence garnered from these early results, it is reasonable to conclude

that the project deserves further investigation and development. The promising results ob-

tained so far serve as a strong testament to the feasibility of the research project. In particular,

even at this preliminary stage, the Safe-CLIP model has demonstrated its effectiveness in mit-

igating the generation of NSFW3.1.1 content when employed as a text encoder in a diffusion

model. Not only Safe-CLIP demonstrates to have good capabilities of preventing the gener-

ation of NSFW images, but it also seems to bring a more accurate embedding to the textual

prompt. In Figure 5.8 it is possible to se a better representation of the prompt in the image

to the right. This example also shows that StableDiffusion can generate good images even

when the input textual prompt is safe.

This initial success confirms the model’s potential for broader applications and sets the stage

for more extensive and rigorous future studies.





Chapter 6

Conclusion

This thesis embarked upon a comprehensive journey into the landscape of generative arti-

ficial intelligence, delineating its societal and ethical risks. The field of generative AI has

witnessed exponential growth in recent times, making it a promising yet uncharted domain.

A core contribution is the introduction of the CAiA dataset, which addresses an existing gap

in the literature. This dataset merges the pressing need for NSFW-aligned content with the

innovation of semantically consistent sentence pairs. The CAiA dataset could be an impor-

tant tool for future investigations in the realm of Trustworthy AI, setting a new benchmark

for ethical considerations in the development of generative models.

Building on this, the research also offers a quantitatively validated fine-tuning technique.

This method proves effective across a range of alignment tasks and demonstrates the feasi-

bility of achieving good model performances, even when constrained by limited data. This

evidence extends the applicability of LLM alignment with eventually every task.

Additionally, this thesis presents a modified variant of the CLIP model, termed safe-CLIP,

which shows promising in mitigating the risks associated with the generation of NSFW con-

tent. This innovation has potential applications not only in improving the ethical compliance

of generative models but also in retrieval systems, enhancing their capacity to filter out inap-

propriate or harmful material.

In summary, this thesis represents a pivotal contribution to the field of artificial intelligence,

particularly for the Trustworthy AI subdomain, and it sets a substantive foundation for future
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works, aiming at advancing both the ethical and technological frontiers of AI development,

by trying to address the ethical complexities and methodological challenges.
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